Analysis of urinary exosomal metabolites identifies cardiovascular risk signatures with added value to urine analysis
-
Published:2020-12
Issue:1
Volume:18
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Agudiez Marta, Martinez Paula J., Martin-Lorenzo Marta, Heredero Angeles, Santiago-Hernandez Aranzazu, Molero Dolores, Garcia-Segura Juan Manuel, Aldamiz-Echevarria Gonzalo, Alvarez-Llamas GloriaORCID
Abstract
Abstract
Background
Subclinical atherosclerosis may result in fatal cardiovascular (CV) events, but the underlying mechanisms and molecular players leading to disease are not entirely understood. Thus, novel approaches capable of identifying the factors involved in pathological progression and providing a better understanding of the subjacent mechanisms are needed. Extracellular vesicles (EVs) have been shown to have numerous biological functions, and their metabolome has recently generated interest as a source of novel biomarkers. The metabolic content of the exosomes has been so far unexplored in cardiovascular disease (CVD), and here, we developed an analytical strategy aimed at probing urinary exosomal metabolite content and its association to CV risk.
Results
Direct analysis of the exosomes without metabolite extraction was evaluated by high-resolution magic angle spinning (1H HR-MAS). Other two methodologies for the analysis of exosomal metabolites by 1H NMR were set up, based on methanol or organic solvents sequential extraction. The three methods were compared in terms of the number of detected signals and signal to noise ratio (S/N). The methanol method was applied to identify altered metabolites in the urinary exosomes of subjects with programmed coronary artery by-pass grafting (CABG) versus a control group. Target mass spectrometry (MS) was also performed for differential analysis. The clinical performance of exosomal metabolites of interest in CVD was investigated, and the added value of the exosomes compared to urine analysis was evaluated.
Based on S/N ratio, simplicity, reproducibility, and quality of the spectrum, the methanol method was chosen for the study in CVD. A cardiometabolic signature composed by 4-aminohippuric acid, N-1-methylnicotinamide, and citric acid was identified in urinary exosomes. Directly in urine, 4-aminohippuric acid and citric acid do not show variation between groups and changes in N-1-methylnicotinamide are less pronounced, proving the added value of exosomes.
Conclusions
We set up a novel methodology to analyze metabolic alterations in urinary exosomes and identified a cardiometabolic signature in these microvesicles. This study constitutes the first evidence of a role for the exosomal metabolism in CVD and demonstrates the possibility to evaluate the urinary exosomal metabolic content by NMR and MS.
Funder
ISCIII IDCSalud Fundación SENEFRO/SEN Comunidad de Madrid Fundación Conchita Rábago
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference36 articles.
1. López-Melgar B, Fernández-Friera L, Oliva B, García-Ruiz JM, Peñalvo JL, Gómez-Talavera S, Sánchez-González J, Mendiguren JM, Ibáñez B, Fernández-Ortiz A, Sanz J, Fuster V. Subclinical atherosclerosis burden by 3D ultrasound in mid-life: the PESA study. J Am Coll Cardiol. 2017;70:301–13. 2. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017;6:e004947. 3. Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martínez-González MA, Hu FB. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review. J Am Heart Assoc. 2017;6:e005705. 4. Barderas MG, Laborde CM, Posada M, de la Cuesta F, Zubiri I, Vivanco F, Alvarez-Llamas G. Metabolomic profiling for identification of novel potential biomarkers in cardiovascular diseases. J Biomed Biotechnol. 2011;790132. 5. Martin-Lorenzo M, Gonzalez-Calero L, Maroto AS, Martinez PJ, Zubiri I, de la Cuesta F, Mourino-Alvarez L, Barderas MG, Heredero A, Aldamiz-Echevarría G, Vivanco F, Alvarez-Llamas G. Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. BBA Mol Basis Dis. 1862;2016:725–32.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|