Analysis of urinary exosomal metabolites identifies cardiovascular risk signatures with added value to urine analysis

Author:

Agudiez Marta,Martinez Paula J.,Martin-Lorenzo Marta,Heredero Angeles,Santiago-Hernandez Aranzazu,Molero Dolores,Garcia-Segura Juan Manuel,Aldamiz-Echevarria Gonzalo,Alvarez-Llamas GloriaORCID

Abstract

Abstract Background Subclinical atherosclerosis may result in fatal cardiovascular (CV) events, but the underlying mechanisms and molecular players leading to disease are not entirely understood. Thus, novel approaches capable of identifying the factors involved in pathological progression and providing a better understanding of the subjacent mechanisms are needed. Extracellular vesicles (EVs) have been shown to have numerous biological functions, and their metabolome has recently generated interest as a source of novel biomarkers. The metabolic content of the exosomes has been so far unexplored in cardiovascular disease (CVD), and here, we developed an analytical strategy aimed at probing urinary exosomal metabolite content and its association to CV risk. Results Direct analysis of the exosomes without metabolite extraction was evaluated by high-resolution magic angle spinning (1H HR-MAS). Other two methodologies for the analysis of exosomal metabolites by 1H NMR were set up, based on methanol or organic solvents sequential extraction. The three methods were compared in terms of the number of detected signals and signal to noise ratio (S/N). The methanol method was applied to identify altered metabolites in the urinary exosomes of subjects with programmed coronary artery by-pass grafting (CABG) versus a control group. Target mass spectrometry (MS) was also performed for differential analysis. The clinical performance of exosomal metabolites of interest in CVD was investigated, and the added value of the exosomes compared to urine analysis was evaluated. Based on S/N ratio, simplicity, reproducibility, and quality of the spectrum, the methanol method was chosen for the study in CVD. A cardiometabolic signature composed by 4-aminohippuric acid, N-1-methylnicotinamide, and citric acid was identified in urinary exosomes. Directly in urine, 4-aminohippuric acid and citric acid do not show variation between groups and changes in N-1-methylnicotinamide are less pronounced, proving the added value of exosomes. Conclusions We set up a novel methodology to analyze metabolic alterations in urinary exosomes and identified a cardiometabolic signature in these microvesicles. This study constitutes the first evidence of a role for the exosomal metabolism in CVD and demonstrates the possibility to evaluate the urinary exosomal metabolic content by NMR and MS.

Funder

ISCIII

IDCSalud

Fundación SENEFRO/SEN

Comunidad de Madrid

Fundación Conchita Rábago

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3