Author:
Yan Huifang,Chaumont Nicole,Gilles Jean François,Bolte Susanne,Hamant Olivier,Bailly Christophe
Abstract
Abstract
Background
Upon water uptake and release of seed dormancy, embryonic plant cells expand, while being mechanically constrained by the seed coat. Cortical microtubules (CMTs) are key players of cell elongation in plants: their anisotropic orientation channels the axis of cell elongation through the guidance of oriented deposition of load-bearing cellulose microfibrils in the cell wall. Interestingly, CMTs align with tensile stress, and consistently, they reorient upon compressive stress in growing hypocotyls. How CMTs first organise in germinating embryos is unknown, and their relation with mechanical stress has not been investigated at such an early developing stage.
Results
Here, we analysed CMT dynamics in dormant and non-dormant Arabidopsis seeds by microscopy of fluorescently tagged microtubule markers at different developmental time points and in response to abscisic acid and gibberellins. We found that CMTs first appear as very few thick bundles in dormant seeds. Consistently, analysis of available transcriptome and translatome datasets show that limiting amounts of tubulin and microtubule regulators initially hinder microtubule self-organisation. Seeds imbibed in the presence of gibberellic acid or abscisic acid displayed altered microtubule organisation and transcriptional regulation. Upon the release of dormancy, CMTs then self-organise into multiple parallel transverse arrays. Such behaviour matches the tensile stress patterns in such mechanically constrained embryos. This suggests that, as CMTs first self-organise, they also align with shape-derived tensile stress patterns.
Conclusions
Our results provide a scenario in which dormancy release in the embryo triggers microtubule self-organisation and alignment with tensile stress prior to germination and anisotropic growth.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献