Regenerating zebrafish scales express a subset of evolutionary conserved genes involved in human skeletal disease
-
Published:2022-01-21
Issue:1
Volume:20
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Bergen Dylan J. M.ORCID, Tong Qiao, Shukla Ankit, Newham Elis, Zethof Jan, Lundberg Mischa, Ryan Rebecca, Youlten Scott E., Frysz Monika, Croucher Peter I., Flik Gert, Richardson Rebecca J., Kemp John P., Hammond Chrissy L., Metz Juriaan R.
Abstract
Abstract
Background
Scales are mineralised exoskeletal structures that are part of the dermal skeleton. Scales have been mostly lost during evolution of terrestrial vertebrates whilst bony fish have retained a mineralised dermal skeleton in the form of fin rays and scales. Each scale is a mineralised collagen plate that is decorated with both matrix-building and resorbing cells. When removed, an ontogenetic scale is quickly replaced following differentiation of the scale pocket-lining cells that regenerate a scale. Processes promoting de novo matrix formation and mineralisation initiated during scale regeneration are poorly understood. Therefore, we performed transcriptomic analysis to determine gene networks and their pathways involved in dermal scale regeneration.
Results
We defined the transcriptomic profiles of ontogenetic and regenerating scales of zebrafish and identified 604 differentially expressed genes (DEGs). These were enriched for extracellular matrix, ossification, and cell adhesion pathways, but not in enamel or dentin formation processes indicating that scales are reminiscent to bone. Hypergeometric tests involving monogenetic skeletal disorders showed that DEGs were strongly enriched for human orthologues that are mutated in low bone mass and abnormal bone mineralisation diseases (P< 2× 10−3). The DEGs were also enriched for human orthologues associated with polygenetic skeletal traits, including height (P< 6× 10−4), and estimated bone mineral density (eBMD, P< 2× 10−5). Zebrafish mutants of two human orthologues that were robustly associated with height (COL11A2, P=6× 10−24) or eBMD (SPP1, P=6× 10−20) showed both exo- and endo- skeletal abnormalities as predicted by our genetic association analyses; col11a2Y228X/Y228X mutants showed exoskeletal and endoskeletal features consistent with abnormal growth, whereas spp1P160X/P160X mutants predominantly showed mineralisation defects.
Conclusion
We show that scales have a strong osteogenic expression profile comparable to other elements of the dermal skeleton, enriched in genes that favour collagen matrix growth. Despite the many differences between scale and endoskeletal developmental processes, we also show that zebrafish scales express an evolutionarily conserved sub-population of genes that are relevant to human skeletal disease.
Funder
versus arthritis ministerie van onderwijs, cultuur en wetenschap national health and medical research council British Heart Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference108 articles.
1. Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–27. https://doi.org/10.1177/0004563218759371. 2. Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone. 2019;122:101–13. https://doi.org/10.1016/j.bone.2019.01.025. 3. Witten PE, Harris MP, Huysseune A, Winkler C. Chapter 13 - Small teleost fish provide new insights into human skeletal diseases. In: Detrich HW, Westerfield M, Zon LI, editors. Methods in Cell Biology, vol. 138: Academic Press; 2017. p. 321–46. 4. Ofer L, Dean MN, Zaslansky P, Kult S, Shwartz Y, Zaretsky J, et al. A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biol. 2019;17(2):e3000140. https://doi.org/10.1371/journal.pbio.3000140. 5. Suniaga S, Rolvien T, vom Scheidt A, IAK F, Bale HA, Huysseune A, et al. Increased mechanical loading through controlled swimming exercise induces bone formation and mineralization in adult zebrafish. Sci Rep. 2018;8(1):3646.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|