Cochlear activity in silent cue-target intervals shows a theta-rhythmic pattern and is correlated to attentional alpha and theta modulations

Author:

Köhler Moritz Herbert AlbrechtORCID,Demarchi Gianpaolo,Weisz Nathan

Abstract

AbstractBackgroundA long-standing debate concerns where in the processing hierarchy of the central nervous system (CNS) selective attention takes effect. In the auditory system, cochlear processes can be influenced via direct and mediated (by the inferior colliculus) projections from the auditory cortex to the superior olivary complex (SOC). Studies illustrating attentional modulations of cochlear responses have so far been limited to sound-evoked responses. The aim of the present study is to investigate intermodal (audiovisual) selective attention in humans simultaneously at the cortical and cochlear level during a stimulus-free cue-target interval.ResultsWe found that cochlear activity in the silent cue-target intervals was modulated by a theta-rhythmic pattern (~ 6 Hz). While this pattern was present independently of attentional focus, cochlear theta activity was clearly enhanced when attending to the upcoming auditory input. On a cortical level, classical posterior alpha and beta power enhancements were found during auditory selective attention. Interestingly, participants with a stronger release of inhibition in auditory brain regions show a stronger attentional modulation of cochlear theta activity.ConclusionsThese results hint at a putative theta-rhythmic sampling of auditory input at the cochlear level. Furthermore, our results point to an interindividual variable engagement of efferent pathways in an attentional context that are linked to processes within and beyond processes in auditory cortical regions.

Funder

Österreichischen Akademie der Wissenschaften

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3