Abstract
Abstract
Background
Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management.
Results
In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant.
Conclusions
Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
Funder
Stiftelsen för Strategisk Forskning
H2020 European Institute of Innovation and Technology
Svenska Forskningsrådet Formas
Carl Tryggers Stiftelse för Vetenskaplig Forskning
Jörgen Lindström's Scholarship Fund
Kungliga Fysiografiska Sällskapet i Lund
Lund University
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献