Abstract
Abstract
Background
Regulation of transcription by DNA methylation in 5’-CpG-3’ context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids.
Results
We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate.
Conclusions
Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Funder
Vetenskapsrådet
Knut och Alice Wallenbergs Stiftelse
Uppsala University
Publisher
Springer Science and Business Media LLC
Reference141 articles.
1. Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, et al. Mechanisms of intrinsic postzygotic isolation: from traditional genic and chromosomal views to genomic and epigenetic perspectives. Cold Spring Harb Perspect Biol. 2023;15(10):a041607.
2. Bateson W. Heredity and variation in modern lights. In: Seward AC, editor. Darwin and modern science. Cambridge: Cambridge University Press; 1909. p. 85–101.
3. Dobzhansky T. Studies on hybrid sterility – I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Zeitschrift für Zellforsch und Mikroskopische Anat. 1934;21:169–223.
4. Muller HJ. Bearing of the Drosophila work on systematics. In: Huxley JS, editor. The new systematics. Oxford: Clarendon Press; 1940. p. 185–268.
5. Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc B. 1806;2020(375):20190533.