Abstract
AbstractBackgroundIn fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens.Pyrenophora tritici-repentis(Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements.ResultsA comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr’s adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr’s effectors:ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb ‘Starship’ transposon (dubbed ‘Horizon’) with a clearly defined target site and target site duplications. ‘Horizon’ was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer ofToxA) was nested within this newly identified Starship. Additionally,ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative ‘Starship’ (dubbed ‘Icarus’) in a ToxB-producing isolate.ToxBand its putative transposon were missing from theToxBnon-coding reference isolate, but the homologtoxband ‘Icarus’ were both present in a different non-coding isolate. This suggests thatToxBmay have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption ofToxBvertical inheritance. Finally, the genome architecture of Ptr was defined as ‘one-compartment’ based on calculated gene distances and evolutionary rates.ConclusionsThese findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.
Funder
Agriculture and Agri-Food Canada
Alberta Wheat Commission
Saskatchewan Wheat Development Commission
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference116 articles.
1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3(3):430–9.
2. Aboukhaddour R, Hafez M, Strelkov S, Fernandez MR. Tan spot under the lenses of plant pathologists. In: Oliver RP, editor. Achieving durable resistance in cereals. Cambridge: Burliegh Dodds; 2021.
3. Lamari L, Strelkov S, Yahyaoui A, Orabi J, Smith R. The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology. 2003;93(4):391–6.
4. Kamel S, Cherif M, Hafez M, Despins T, Aboukhaddour R. Pyrenophora tritici-repentis in Tunisia: race structure and effector genes. Front Plant Sci. 2019;10:1562.
5. Effertz R, Meinhardt SW, Anderson J, Jordahl J, Francl L. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology. 2002;92(5):527–33.