Elevated testicular apoptosis is associated with elevated sphingosine driven by gut microbiota in prediabetic sheep

Author:

Sun Yuanchao,Sun Peng,Hu Yanting,Shan Liying,Geng Qi,Gong Yutian,Fan Haitao,Zhang Teng,Zhou YangORCID

Abstract

AbstractBackgroundMen with prediabetes often exhibit concomitant low-quality sperm production or even infertility, problems which urgently require improved therapeutic options. In this study, we have established a sheep model of diet-induced prediabetes that is associated with spermatogenic defects and have explored the possible underlying metabolic causes.ResultsWe compared male sheep fed a normal diet with those in which prediabetes was induced by a rich diet and with a third group in which the rich diet was supplemented by melatonin. Only the rich diet group had symptoms of prediabetes, and in these sheep, we found impaired spermatogenesis characterized by a block in the development of round spermatids and an increased quantity of testicular apoptotic cells. Comparing the gut microbiomes and intestinal digest metabolomes of the three groups revealed a distinctive difference in the taxonomic composition of the microbiota in prediabetic sheep, and an altered metabolome, whose most significant feature was altered sphingosine metabolism; elevated sphingosine was also found in blood and testes. Administration of melatonin alleviated the symptoms of prediabetes, including those of impaired spermatogenesis, while restoring a more normal microbiota and metabolic levels of sphingosine. Fecal microbiota transplantation from prediabetic sheep induced elevated sphingosine levels and impaired spermatogenesis in recipient mice, indicating a causal role of gut microbiota in these phenotypes.ConclusionsOur results point to a key role of sphingosine in the disruption of spermatogenesis in prediabetic sheep and suggest it could be a useful disease marker; furthermore, melatonin represents a potential prebiotic agent for the treatment of male infertility caused by prediabetes.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Reference35 articles.

1. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16:377–90.

2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.

3. Brody H. Diabetes. Nature. 2012;485:S1.

4. Delfino M, Imbrogno N, Elia J, Capogreco F, Mazzilli F. Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol Nefrol. 2007;59:131–5.

5. La Vignera S, Calogero AE, Condorelli R, Lanzafame F, Giammusso B, Vicari E. Andrological characterization of the patient with diabetes mellitus. Minerva Endocrinol. 2009;34:1–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3