GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph

Author:

Zhu Yongdi,Ning Chunhui,Zhang Naiqian,Wang Mingyi,Zhang Yusen

Abstract

Abstract Background Identification of potential drug-target interactions (DTIs) with high accuracy is a key step in drug discovery and repositioning, especially concerning specific drug targets. Traditional experimental methods for identifying the DTIs are arduous, time-intensive, and financially burdensome. In addition, robust computational methods have been developed for predicting the DTIs and are widely applied in drug discovery research. However, advancing more precise algorithms for predicting DTIs is essential to meet the stringent standards demanded by drug discovery. Results We proposed a novel method called GSRF-DTI, which integrates networks with a deep learning algorithm to identify DTIs. Firstly, GSRF-DTI learned the embedding representation of drugs and targets by integrating multiple drug association information and target association information, respectively. Then, GSRF-DTI considered the influence of drug-target pair (DTP) association on DTI prediction to construct a drug-target pair network (DTP-NET). Next, we utilized GraphSAGE on DTP-NET to learn the potential features of the network and applied random forest (RF) to predict the DTIs. Furthermore, we conducted ablation experiments to validate the necessity of integrating different types of network features for identifying DTIs. It is worth noting that GSRF-DTI proposed three novel DTIs. Conclusions GSRF-DTI not only considered the influence of the interaction relationship between drug and target but also considered the impact of DTP association relationship on DTI prediction. We initially use GraphSAGE to aggregate the neighbor information of nodes for better identification. Experimental analysis on Luo’s dataset and the newly constructed dataset revealed that the GSRF-DTI framework outperformed several state-of-the-art methods significantly.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3