DNA polymerases in precise and predictable CRISPR/Cas9-mediated chromosomal rearrangements

Author:

Mehryar Mohammadreza M.,Shi Xin,Li Jingwei,Wu QiangORCID

Abstract

Abstract Background Recent studies have shown that, owning to its cohesive cleavage, Cas9-mediated CRISPR gene editing outcomes at junctions of chromosomal rearrangements or DNA-fragment editing are precise and predictable; however, the underlying mechanisms are poorly understood due to lack of suitable assay system and analysis tool. Results Here we developed a customized computer program to take account of staggered or cohesive Cas9 cleavage and to rapidly process large volumes of junctional sequencing reads from chromosomal rearrangements or DNA-fragment editing, including DNA-fragment inversions, duplications, and deletions. We also established a sensitive assay system using HPRT1 and DCK as reporters for cell growth during DNA-fragment editing by Cas9 with dual sgRNAs and found prominent large resections or long deletions at junctions of chromosomal rearrangements. In addition, we found that knockdown of PolQ (encoding Polθ polymerase), which has a prominent role in theta-mediated end joining (TMEJ) or microhomology-mediated end joining (MMEJ), results in increased large resections but decreased small deletions. We also found that the mechanisms for generating small deletions of 1bp and >1bp during DNA-fragment editing are different with regard to their opposite dependencies on Polθ and Polλ (encoded by the PolL gene). Specifically, Polθ suppresses 1bp deletions but promotes >1bp deletions, whereas Polλ promotes 1bp deletions but suppresses >1bp deletions. Finally, we found that Polλ is the main DNA polymerase responsible for fill-in of the 5′ overhangs of staggered Cas9 cleavage ends. Conclusions These findings contribute to our understanding of the molecular mechanisms of CRISPR/Cas9-mediated DNA-fragment editing and have important implications for controllable, precise, and predictable gene editing.

Funder

National Key R&D Program of China

the National Natural Science Foundation of China

the Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3