High-intensity interval training induces lactylation of fatty acid synthase to inhibit lipid synthesis

Author:

Chen Xuefei,Huang Wenhua,Zhang Jingbo,Li Yanjun,Xing Zheng,Guo Lanlan,Jiang Hongfeng,Zhang JingORCID

Abstract

Abstract Background The aim of study was to observe the effect of increased lactate levels during high-intensity interval training (HIIT) on protein lactylation, identify the target protein, and investigate the regulatory effect of lactylation on the function of the protein. Methods C57B/L6 mice were divided into 3 groups: the control group, HIIT group, and dichloroacetate injection + HIIT group (DCA + HIIT). The HIIT and DCA + HIIT groups underwent 8 weeks of HIIT treatment, and the DCA + HIIT group was injected DCA before HIIT treatment. The expression of lipid metabolism-related genes was determined. Protein lactylation in subcutaneous adipose tissue was identified and analyzed using 4D label-free lactylation quantitative proteomics and bioinformatics analyses. The fatty acid synthase (FASN) lactylation and activity was determined. Results HIIT had a significant effect on fat loss; this effect was weakened when lactate production was inhibited. HIIT significantly upregulated the protein lactylation while lactate inhibition downregulated in iWAT. FASN had the most modification sites. Lactate treatment increased FASN lactylation levels, inhibited FASN activity, and reduced palmitate and triglyceride synthesis in 3T3-L1 cells. Conclusions This investigation revealed that lactate produced by HIIT increased protein pan-lactylation levels in iWAT. FASN lactylation inhibited de novo lipogenesis, which may be an important mechanism in HIIT-induced fat loss.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3