Secondary structure of the human mitochondrial genome affects formation of deletions
-
Published:2023-05-08
Issue:1
Volume:21
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Shamanskiy VictorORCID, Mikhailova Alina A.ORCID, Tretiakov Evgenii O.ORCID, Ushakova KristinaORCID, Mikhailova Alina G.ORCID, Oreshkov SergeiORCID, Knorre Dmitry A.ORCID, Ree Natalia, Overdevest Jonathan B.ORCID, Lukowski Samuel W.ORCID, Gostimskaya Irina, Yurov Valerian, Liou Chia-WeiORCID, Lin Tsu-KungORCID, Kunz Wolfram S.ORCID, Reymond AlexandreORCID, Mazunin IlyaORCID, Bazykin Georgii A.ORCID, Fellay JacquesORCID, Tanaka Masashi, Khrapko KonstantinORCID, Gunbin KonstantinORCID, Popadin KonstantinORCID
Abstract
Abstract
Background
Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.
Results
By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a “hot spot” where one deletion breakpoint occurred within the region of 6–9 kb and another within 13–16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6–9 kb and 13–16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470–8482 bp (base pair) and a second arm at 13,447–13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging.
Conclusions
Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference59 articles.
1. Poovathingal SK, Gruber J, Lakshmanan L, Halliwell B, Gunawan R. Is mitochondrial DNA turnover slower than commonly assumed? Biogerontology. 2012;13:557–64. 2. Rebolledo-Jaramillo B, Su MSW, Stoler N, McElhoe JA, Dickins B, Blankenberg D, et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 2014;111:15474–9. 3. Wilton PR, Zaidi A, Makova K, Nielsen R. A population phylogenetic view of mitochondrial heteroplasmy. Genetics. 2018;208:1261–74. 4. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38:518–20. 5. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–7.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|