Extracting physiological information in experimental biology via Eulerian video magnification

Author:

Lauridsen HenrikORCID,Gonzales Selina,Hedwig Daniela,Perrin Kathryn L.,Williams Catherine J. A.,Wrege Peter H.,Bertelsen Mads F.,Pedersen Michael,Butcher Jonathan T.

Abstract

Abstract Background Videographic material of animals can contain inapparent signals, such as color changes or motion that hold information about physiological functions, such as heart and respiration rate, pulse wave velocity, and vocalization. Eulerian video magnification allows the enhancement of such signals to enable their detection. The purpose of this study is to demonstrate how signals relevant to experimental physiology can be extracted from non-contact videographic material of animals. Results We applied Eulerian video magnification to detect physiological signals in a range of experimental models and in captive and free ranging wildlife. Neotenic Mexican axolotls were studied to demonstrate the extraction of heart rate signal of non-embryonic animals from dedicated videographic material. Heart rate could be acquired both in single and multiple animal setups of leucistic and normally colored animals under different physiological conditions (resting, exercised, or anesthetized) using a wide range of video qualities. Pulse wave velocity could also be measured in the low blood pressure system of the axolotl as well as in the high-pressure system of the human being. Heart rate extraction was also possible from videos of conscious, unconstrained zebrafish and from non-dedicated videographic material of sand lizard and giraffe. This technique also allowed for heart rate detection in embryonic chickens in ovo through the eggshell and in embryonic mice in utero and could be used as a gating signal to acquire two-phase volumetric micro-CT data of the beating embryonic chicken heart. Additionally, Eulerian video magnification was used to demonstrate how vocalization-induced vibrations can be detected in infrasound-producing Asian elephants. Conclusions Eulerian video magnification provides a technique to extract inapparent temporal signals from videographic material of animals. This can be applied in experimental and comparative physiology where contact-based recordings (e.g., heart rate) cannot be acquired.

Funder

Lundbeckfonden

Novo Nordisk Fonden

Velux Fonden

Helga og Peter Kornings Fond

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Reference67 articles.

1. Spallanzani L, Vassalli AM. Lettere sopra il sospetto di un nuovo senso nei pipistrelli. Torino: Nella Stamperia Reale; 1794.

2. Pierce GW, Griffin DR. Experimental determination of supersonic notes emitted by bats. J Mammal. 1938;19:454–5.

3. Griffin DR, Galambos R. The sensory basis of obstacle avoidance by flying bats. J Exp Zool. 1941;86:481–506.

4. Schevill WE, McBride AF. Evidence for echolocation by cetaceans. Deep-Sea Res. 1953;3:153–4.

5. Lissmann HW. On the function and evolution of electric organs in fish. J Exp Biol. 1958;35:156–91.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3