Abstract
Abstract
Background
In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis.
Results
On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions.
Conclusions
We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference122 articles.
1. Siddiqui K, On KF, Diffley JFX. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol. Cold Spring Harbor Lab. 2013;5:a012930.
2. Jameson K, Wilkinson AJ. Control of initiation of DNA replication in Bacillus subtilis and Escherichia coli. Genes. 2017;8:22–32.
3. Bipatnath M, Dennis PP, Bremer H. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J Bacteriol. 1998;180(2):265–73.
4. Helmstetter CE. Timing of synthetic activities in the cell cycle. In: Neidhart FC, Curtis RI, Ingraham EC, Lin KB, editors. (null) LECC Escherichia coli and Salmonella. Washington DC: ASM Press; 1996. p. 1591–605.
5. Schaechter M, Maaloe O, O KN. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958;19:592–606.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献