Prediction of protein solubility based on sequence physicochemical patterns and distributed representation information with DeepSoluE

Author:

Wang Chao,Zou Quan

Abstract

Abstract Background Protein solubility is a precondition for efficient heterologous protein expression at the basis of most industrial applications and for functional interpretation in basic research. However, recurrent formation of inclusion bodies is still an inevitable roadblock in protein science and industry, where only nearly a quarter of proteins can be successfully expressed in soluble form. Despite numerous solubility prediction models having been developed over time, their performance remains unsatisfactory in the context of the current strong increase in available protein sequences. Hence, it is imperative to develop novel and highly accurate predictors that enable the prioritization of highly soluble proteins to reduce the cost of actual experimental work. Results In this study, we developed a novel tool, DeepSoluE, which predicts protein solubility using a long-short-term memory (LSTM) network with hybrid features composed of physicochemical patterns and distributed representation of amino acids. Comparison results showed that the proposed model achieved more accurate and balanced performance than existing tools. Furthermore, we explored specific features that have a dominant impact on the model performance as well as their interaction effects. Conclusions DeepSoluE is suitable for the prediction of protein solubility in E. coli; it serves as a bioinformatics tool for prescreening of potentially soluble targets to reduce the cost of wet-experimental studies. The publicly available webserver is freely accessible at http://lab.malab.cn/~wangchao/softs/DeepSoluE/.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Reference59 articles.

1. Wilkinson DL, Harrison RG. Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology. 1991;9(5):443–8.

2. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: An update. Pharm Res. 2010;27(4):544–75.

3. Ventura S. Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact. 2005;4(1):11.

4. Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. In: Kornberg RD, editor. Annu Rev Biochem, vol. 86; 2017. p. 27–68.

5. Bhandari BK, Gardner PP, Lim CS. Solubility-Weighted Index: fast and accurate prediction of protein solubility. Bioinformatics. 2020;36(18):4691–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3