Attention to visual motion suppresses neuronal and behavioral sensitivity in nearby feature space

Author:

Yoo Sang-AhORCID,Martinez-Trujillo Julio C.,Treue Stefan,Tsotsos John K.,Fallah Mazyar

Abstract

Abstract Background Feature-based attention prioritizes the processing of the attended feature while strongly suppressing the processing of nearby ones. This creates a non-linearity or “attentional suppressive surround” predicted by the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neurophysiological and psychophysical approaches. Results Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a motion task. When attention was allocated to a stimulus moving in the neurons’ preferred direction, response tuning curves showed its minimum for directions 60–90° away from the preferred direction, an attentional suppressive surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly tuned and inhibitory widely tuned inputs into a neuron, with feature-based attention predominantly increasing the gain of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention produces a similar non-linearity on motion discrimination performance. Conclusions Our results link the gain modulation of neuronal inputs and tuning curves examined through the feature-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning model, providing a unified framework for the documented effects of feature-based attention on neuronal responses and behavior.

Funder

Canadian Institutes of Health Research

Western University

Deutsches Primatenzentrum

air force office of scientific research

Canada Research Chairs

canadian network for research and innovation in machining technology, natural sciences and engineering research council of canada

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3