Diversity across organisational scale emerges through dispersal ability and speciation dynamics in tropical fish

Author:

Keggin ThomasORCID,Waldock Conor,Skeels Alexander,Hagen Oskar,Albouy Camille,Manel Stéphanie,Pellissier Loïc

Abstract

Abstract Background Biodiversity exists at different levels of organisation: e.g. genetic, individual, population, species, and community. These levels of organisation all exist within the same system, with diversity patterns emerging across organisational scales through several key processes. Despite this inherent interconnectivity, observational studies reveal that diversity patterns across levels are not consistent and the underlying mechanisms for variable continuity in diversity across levels remain elusive. To investigate these mechanisms, we apply a spatially explicit simulation model to simulate the global diversification of tropical reef fishes at both the population and species levels through emergent population-level processes. Results We find significant relationships between the population and species levels of diversity which vary depending on both the measure of diversity and the spatial partitioning considered. In turn, these population-species relationships are driven by modelled biological trait parameters, especially the divergence threshold at which populations speciate. Conclusions To explain variation in multi-level diversity patterns, we propose a simple, yet novel, population-to-species diversity partitioning mechanism through speciation which disrupts continuous diversity patterns across organisational levels. We expect that in real-world systems this mechanism is driven by the molecular dynamics that determine genetic incompatibility, and therefore reproductive isolation between individuals. We put forward a framework in which the mechanisms underlying patterns of diversity across organisational levels are universal, and through this show how variable patterns of diversity can emerge through organisational scale.

Funder

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3