Abstract
Abstract
Background
Echolocating bats use echo information to perceive space, control their behavior, and adjust flight navigation strategies in various environments. However, the echolocation behavior of bats, including echo information, has not been thoroughly investigated as it is technically difficult to measure all the echoes that reach the bats during flight, even with the conventional telemetry microphones currently in use. Therefore, we attempted to reproduce the echoes received at the location of bats during flight by combining acoustic simulation and behavioral experiments with acoustic measurements. By using acoustic simulation, echoes can be reproduced as temporal waveforms (including diffracted waves and multiple reflections), and detailed echo analysis is possible even in complex obstacle environments.
Results
We visualized the spatiotemporal changes in the echo incidence points detected by bats during flight, which enabled us to investigate the “echo space” revealed through echolocation for the first time. We then hypothesized that by observing the differences in the “echo space” before and after spatial learning, the bats’ attentional position would change. To test this hypothesis, we examined how the distribution of visualized echoes concentrated at the obstacle edges after the bats became more familiar with their environment. The echo incidence points appeared near the edge even when the pulse direction was not toward the edge. Furthermore, it was found that the echo direction correlated with the turn rate of the bat’s flight path, revealing for the first time the relationship between the echo direction and the bat’s flight path.
Conclusions
We were able to clarify for the first time how echoes space affects echolocation behavior in bats by combining acoustic simulations and behavioral experiments.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference54 articles.
1. Caves EM, Brandley NC, Johnsen S. Visual acuity and the evolution of signals. Trends Ecol Evol. 2018;33:358–72.
2. Taketomi T, Uchiyama H, Ikeda S. Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans Comput Vis Appl. 2017;9:16.
3. Gordon A, Li H, Jonschkowski R, Angelova A. Depth from videos in the wild: unsupervised monocular depth learning from unknown cameras. In: IEEE Publications/CVF International Conference on Computer Vision (ICCV); 2019. p. 8976–85.
4. Griffin DR, Lindsay RB. Listening in the dark. Phys Today. 1959;12:42.
5. Falk B, Jakobsen L, Surlykke A, Moss CF. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments. J Exp Biol. 2014;217(Pt 24):4356–64.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献