Abstract
Abstract
Background
Intrinsically disordered regions (IDRs) are widely distributed in proteins and related to many important biological functions. Accurately identifying IDRs is of great significance for protein structure and function analysis. Because the long disordered regions (LDRs) and short disordered regions (SDRs) share different characteristics, the existing predictors fail to achieve better and more stable performance on datasets with different ratios between LDRs and SDRs. There are two main reasons. First, the existing predictors construct network structures based on their own experiences such as convolutional neural network (CNN) which is used to extract the feature of neighboring residues in protein, and long short-term memory (LSTM) is used to extract the long-distance dependencies feature of protein residues. But these networks cannot capture the hidden feature associated with the length-dependent between residues. Second, many algorithms based on deep learning have been proposed but the complementarity of the existing predictors is not fully explored and used.
Results
In this study, the neural architecture search (NAS) algorithm was employed to automatically construct the network structures so as to capture the hidden features in protein sequences. In order to stably predict both the LDRs and SDRs, the model constructed by NAS was combined with length-dependent models for capturing the unique features of SDRs or LDRs and general models for capturing the common features between LDRs and SDRs. A new predictor called IDP-Fusion was proposed.
Conclusions
Experimental results showed that IDP-Fusion can achieve more stable performance than the other existing predictors on independent test sets with different ratios between SDRs and LDRs.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献