Abstract
Abstract
Background
Despite the increasing number of epigenomic studies in plants, little is known about the forces that shape the methylome in long-lived woody perennials. The Lombardy poplar offers an ideal opportunity to investigate the impact of the individual environmental history of trees on the methylome.
Results
We present the results of three interconnected experiments on Lombardy poplar. In the first experiment, we investigated methylome variability during a growing season and across vegetatively reproduced generations. We found that ramets collected over Europe and raised in common conditions have stable methylomes in symmetrical CG-contexts. In contrast, seasonal dynamics occurred in methylation patterns in CHH context. In the second experiment, we investigated whether methylome patterns of plants grown in a non-parental environment correlate with the parental climate. We did not observe a biological relevant pattern that significantly correlates with the parental climate. Finally, we investigated whether the parental environment has persistent carry-over effects on the vegetative offspring’s phenotype. We combined new bud set observations of three consecutive growing seasons with former published bud set data. Using a linear mixed effects analysis, we found a statistically significant but weak short-term, parental carry-over effect on the timing of bud set. However, this effect was negligible compared to the direct effects of the offspring environment.
Conclusions
Genome-wide cytosine methylation patterns in symmetrical CG-context are stable in Lombardy poplar and appear to be mainly the result of random processes. In this widespread poplar clone, methylation patterns in CG-context can be used as biomarkers to infer a common ancestor and thus to investigate the recent environmental history of a specific Lombardy poplar. The Lombardy poplar shows high phenotypic plasticity in a novel environment which enabled this clonal tree to adapt and survive all over the temperate regions of the world.
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. McGuigan K, Hoffmann AA, Sgrò CM. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philos Trans R Soc Lond B Biol Sci. 1826;2021(376):20200119.
2. Hagmann J, Becker C, Muller J, Stegle O, Meyer RC, Wang G, Schneeberger K, Fitz J, Altmann T, Bergelson J, et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 2015;11(1):e1004920.
3. Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330(6004):622–7.
4. Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A, Roudier F, Colot V. DNA methylation dynamics during early plant life. Genome Biol. 2017;18:12.
5. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182(3):845–50.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Time's up: Epigenetic clocks in plants;Current Opinion in Plant Biology;2024-10