Diminished activation of excitatory neurons in the prelimbic cortex leads to impaired working memory capacity in mice

Author:

Jiang Li-Xin,Huang Geng-Di,Tian Yong-Lu,Cong Ri-Xu,Meng Xue,Wang Hua-Li,Zhang Chen,Yu Xin

Abstract

Abstract Background Working memory capacity impairment is an early sign of Alzheimer's disease, but the underlying mechanisms remain unclear. Clarifying how working memory capacity is affected will help us better understand the pathological mechanism of Alzheimer's disease. We used the olfactory working memory capacity paradigm to evaluate memory capacity in 3-month-old 5XFAD (an animal model of Alzheimer's disease) mice. Immunofluorescence staining of the prefrontal cortex was performed to detect the number of FOS-positive neurons, calmodulin-dependent protein kinase II-positive neurons, and glutamate decarboxylase-positive neurons in the prelimbic cortex and infralimbic cortex. A chemogenetic method was then used to modulate the inhibition and activation of excitatory neurons in the prelimbic cortex of wild-type and 5XFAD mice and to measure the memory capacity of mice. Results Working memory capacity was significantly diminished in 5XFAD mice compared to littermate wild-type mice. Neuronal activation of the prelimbic cortex, but not the infralimbic cortex, was attenuated in 5XFAD mice performing the olfactory working memory capacity task. Subsequently, the FOS-positive neurons were co-localized with both calmodulin-dependent protein kinase II-positive neurons and glutamate decarboxylase-positive neurons. The results showed that the activation of excitatory neurons in the prelimbic cortex was correlated with working memory capacity in mice. Our results further demonstrate that the chemogenetic inhibition of prelimbic cortex excitatory neurons resulted in reduced working memory capacity in wild-type mice, while the chemogenetic activation of prelimbic cortex excitatory neurons improved the working memory capacity of 5XFAD mice. Conclusion The diminished activation of prelimbic cortex excitatory neurons in 5XFAD mice during task performance is associated with reduced working memory capacity, and activation modulation of excitatory neurons by chemogenetic methods can improve memory capacity impairment in 5XFAD mice. These findings may provide a new direction for exploring Alzheimer's disease therapeutic approaches.

Funder

National Key R&D Programme of China

Young Scientists Fund

Shenzhen Science and Technology Program

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3