Pathogen-derived mechanical cues potentiate the spatio-temporal implementation of plant defense

Author:

Léger Ophélie,Garcia Frédérick,Khafif Mehdi,Carrere Sebastien,Leblanc-Fournier Nathalie,Duclos Aroune,Tournat Vincent,Badel Eric,Didelon Marie,Le Ru Aurélie,Raffaele Sylvain,Barbacci AdelinORCID

Abstract

Abstract Background The ongoing adaptation of plants to their environment is the basis for their survival. In this adaptation, mechanoperception of gravity and local curvature plays a role of prime importance in finely regulating growth and ensuring a dynamic balance preventing buckling. However, the abiotic environment is not the exclusive cause of mechanical stimuli. Biotic interactions between plants and microorganisms also involve physical forces and potentially mechanoperception. Whether pathogens trigger mechanoperception in plants and the impact of mechanotransduction on the regulation of plant defense remains however elusive. Results Here, we found that the perception of pathogen-derived mechanical cues by microtubules potentiates the spatio-temporal implementation of plant immunity to fungus. By combining biomechanics modeling and image analysis of the post-invasion stage, we reveal that fungal colonization releases plant cell wall-born tension locally, causing fluctuations of tensile stress in walls of healthy cells distant from the infection site. In healthy cells, the pathogen-derived mechanical cues guide the reorganization of mechanosensing cortical microtubules (CMT). The anisotropic patterning of CMTs is required for the regulation of immunity-related genes in distal cells. The CMT-mediated mechanotransduction of pathogen-derived cues increases Arabidopsis disease resistance by 40% when challenged with the fungus Sclerotinia sclerotiorum. Conclusions CMT anisotropic patterning triggered by pathogen-derived mechanical cues activates the implementation of early plant defense in cells distant from the infection site. We propose that the mechano-signaling triggered immunity (MTI) complements the molecular signals involved in pattern and effector-triggered immunity.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3