Abstract
Abstract
Background
Candida glabrata is an opportunistic yeast pathogen thought to have a large genetic and phenotypic diversity and a highly plastic genome. However, the lack of chromosome-level genome assemblies representing this diversity limits our ability to accurately establish how chromosomal structure and gene content vary across strains.
Results
Here, we expanded publicly available assemblies by using long-read sequencing technologies in twelve diverse strains, obtaining a final set of twenty-one chromosome-level genomes spanning the known C. glabrata diversity. Using comparative approaches, we inferred variation in chromosome structure and determined the pan-genome, including an analysis of the adhesin gene repertoire. Our analysis uncovered four new adhesin orthogroups and inferred a rich ancestral adhesion repertoire, which was subsequently shaped through a still ongoing process of gene loss, gene duplication, and gene conversion.
Conclusions
C. glabrata has a largely stable pan-genome except for a highly variable subset of genes encoding cell wall-associated functions. Adhesin repertoire was established for each strain and showed variability among clades.
Funder
HORIZON EUROPE European Research Council
Ministerio de Ciencia e Innovación
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献