Evaluation of Irvingia kernels extract as biobased wood adhesive

Author:

Alawode A. O.,Eselem-Bungu P. S.,Amiandamhen S. O.,Meincken M.,Tyhoda L.ORCID

Abstract

AbstractIrvingia tree species have been earmarked for domestication in many countries due to their potential as raw materials for various applications, which include biodiesel, cosmetics, perfume, soap, etc. Presently, there is no information on the utilization of kernel seed extract as a potential source of green wood adhesive. This study is focused on investigating the properties of adhesives produced from kernel seeds of two Irvingia wood species i.e. Irvingia gabonensis (IG) and Irvingia wombolu (IW), as well as investigating the improved properties derived from the effect of modification using a few selected modifying agents including glutaraldehyde, glyoxal, epichlorohydrin (EPI) and an acid/base type process modification. Polyethylene (PE) was used along with the glutaraldehyde, glyoxal and epichlorohydrin modifiers in the modification process. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were conducted to study the effect of modification on adhesive properties. The glycosidic carbon of the unmodified extracts and that of the EPI modified sample were not sensitive to chain conformations. Principal components (PC) 1 and 2 explained 85.19 and 9.54%, respectively, of the total variability in FTIR spectra among the modified and unmodified adhesives. The unmodified samples for IG and IW exhibited one peak with crystallization temperatures of 18.7 and 14.4 °C, respectively, indicating only one component exhibits some low degree crystallinity. The adhesive properties of the modified extracts were tested on wood veneers according to ASTM standard. The shear strength of the modified adhesives ranged from 1.5 to 3.93 MPa and 1.7 to 4.05 MPa for IG and IW, respectively. The modified samples containing PE showed marked improvement in the shear strength. The highest values were about 63% higher than the shear strength of unmodified samples with least shear strength. The results indicated that the modification of Irvingia-based adhesives had a great contribution to their performance as natural wood adhesives.

Funder

Council for Scientific and Industrial Research, South Africa

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference44 articles.

1. Hashim R, Said N, Lamaming J, Baskaran M, Sulaiman O, Sato M, Hiziroglu S, Sugimoto T (2011) Inflence of press temperature on the properties of binderless particleboard made from oil palm trunk. Mater Des 32:2520–2525

2. Van Langenberg K, Grigsby W, Ryan G (2010) Green adhesives: Options for the Australian industry—summary of recent research into green adhesives from renewable materials and identification of those that are closest to commercial uptake. For. Wood Prod. Aust. Proj. Number PNB158-0910, FWPA

3. Zhonggi H (ed) (2017) Bio-based wood adhesives: Preparation, characterization, and testing, 1st edn. CRC Press, Boca Raton

4. Dongre P, Driscoll M, Amidon T, Bujanovic B (2015) Lignin-furfural based adhesives. Energies 8:7897–7914

5. Wang Z, Li Z, Gu Z, Hong Y, Cheng L (2012) Preparation, characterization and properties of starch-based wood adhesive. Carbohydr Polym 88:699–706

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3