Cross-polarization dynamics and conformational study of variously sized cellulose crystallites using solid-state 13C NMR

Author:

Daicho KazuhoORCID,Fujisawa ShujiORCID,Kobayashi KayokoORCID,Saito TsuguyukiORCID,Ashida Jun

Abstract

AbstractCellulose forms crystalline fibrils, via biosynthesis, that can be just a few nanometers wide. The crystallinity is a structural factor related to material performance. Recently, many routes to isolate these fibrils as nanocellulose have been developed, and there exist various types of nanocellulose with different crystallinities. Quantitative assessment of the crystallinity of nanocellulose is thus essential to advance knowledge in the high performance and functionality of such materials. Solid-state 13C cross-polarization/magic-angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy is a strong tool to investigate the structural features and dynamics of solid cellulose. The crystallinity is often evaluated by using the NMR signal ratio of the C4 crystalline and noncrystalline regions as a crystallinity index (CI) value. To calculate the CI value, it is necessary to examine the dependence of the contact time (CT) for CP on the signal intensity and set the optimum CT at a maximum of the signal intensity. However, the dependence has not been investigated for evaluation of the CI value of various cellulose samples with different crystal sizes. Here, we optimized the CT for evaluation of the CI value of cellulose with different crystal sizes. The error in the CI at the optimized CT was ~ 3%. At the optimized CT, the structural change after surface modification by TEMPO-oxidation was also analyzed from the NMR spectra of the C6 region. The relationship between the CI value and the degree of oxidation shows that it is possible to evaluate the degree of oxidation from the NMR spectra irrespective of the crystallinity of cellulose. Furthermore, the C4-based CI value was linearly correlated with the C6-based trans-gauche (tg) ratio, which is approximated by a function, CI = 0.9 tg ratio.

Funder

JST-Mirai R&D Program

JSPS Grant-in-Aids for Young Scientists

PHOENIX Grant-in-Aid

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3