Decay detection of constructional softwoods using machine olfaction

Author:

Suzuki MasakiORCID,Miyauchi Teruhisa,Isaji Shinichi,Hirabayashi Yasushi,Naganawa Ryuichi

Abstract

AbstractFungal decomposition of wood severely affects the soundness of timber constructions. The diagnosis of wood decay requires direct observations or sampling by skilled experts. Wood decay often occurs in obscure spaces, including the enclosed inner spaces of walls or under the floor. In this study, we examined the ability of machine olfaction to detect odors of fungi grown on common construction softwoods to provide a novel diagnostic method for wood construction soundness. The combination of a simple device equipped with semiconductor gas sensors (gas sensor array) and multivariate analysis discriminated a fungi-related odor from control odor without instrumental analysis (e.g., gas chromatography). This method is often referred to as machine olfaction or electronic nose. We measured the odor of wood test pieces that were infected with Fomitopsis palustris or Trametes versicolor and sound test pieces using a gas sensor array. The sensor responses of the specimens showed different patterns between the inoculated and control samples. Each specimen class formed independent groups in a principal component score plot, almost regardless of wood species, fungal species, or cultivation period. This method provides a new decay diagnosis method that is cost-effective and easy to operate.

Funder

hokkaido research organization

japan society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3