Application of decision tree-based techniques to veneer processing

Author:

Ahmed Suborna ShekhorORCID,Cool Julie,Karim Mohammad Ehsanul

Abstract

AbstractIn veneer-drying facilities, controllers face many challenges to maintain desired parameters in the final product based on customer’s needs. The major challenge is setting process parameters to control the temperature and humidity within the various sections in the drying machine to obtain the desired properties of the final product. The regression tree approach can be used to simplify the complex relationship among process and product variables for identifying critical factors for drying veneer and achieving the desired range of veneer temperature. In this study, we investigated veneer-drying conditions and the short-term effect of climatic variables on veneer temperature. We have shown a three-step process to develop an optimal regression tree for veneer temperature. From the developed optimal tree, we are able to identify the most important threshold points of predictor space and adjustment for the climatic variables on the temperature of veneer sheets. The findings of this study were further investigated in an industrial setting and the desired veneer temperatures were attained for the final product. This application shows that we can follow the path of the optimal tree to pinpoint the most desired veneer temperature outcome. The developed optimal tree is relatively easy to use and interpret to estimate the average response of veneer temperature.

Funder

Mitacs

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference17 articles.

1. Thant AA, Yee SS, Htike TT (2009) Modeling drying time during veneer drying and comparison with experimental study. In: Proceedings of the international multiconference of engineers and computer scientists, Hong Kong, 2009

2. Rippy RC, Wagner FG, Gorman TM, Layton HD, Bodenheimer T (2000) Stress-wave analysis of Douglas-fir logs for veneer properties. For Prod J 50(4):49–52

3. Zhang SY, Yu Q, Beaulieu J (2004) Genetic variation in veneer quality and its correlation to growth in white spruce. Can J For Res 34(6):1311–1318

4. Vikram V, Cherry ML, Briggs D, Cress DW, Evans R, Howe GT (2011) Stiffness of Douglas-fir lumber: effects of wood properties and genetics. Can J For Res 41(6):1160–1173

5. Lutz JF (1974) Drying veneer to a controlled final moisture content by hot pressing and steaming, USDA, No. FSRP-FPL-227, Forest Service, Forest Products Laboratory, Madison. Wisconsin, USA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3