Preparation of carbon nanoparticles from activated carbon by aqueous counter collision

Author:

Yu Liwei,Tatsumi Daisuke,Kondo TetsuoORCID

Abstract

AbstractIn the present study, crystalline cellulose biomass material was converted into carbon nanoparticles via carbonization to activated carbon with micropores of various sizes. This was subsequently subjected to aqueous counter collision (ACC) to produce hydrophobic porous functional particles. Initially, raw crystalline cellulose material was carbonized into activated carbon materials with various pore distributions prior to ACC. Pore distribution depended on the activation time, and was confirmed by nitrogen (N2) adsorption isotherms. The surface areas and pore volumes of carbon activated for 8 h were larger than those of carbon activated for 2 h. When they were subjected to ACC, the width and length of the carbon particles decreased as the number of pulverizing cycles during the ACC treatment increased. Eventually, carbon nanoparticles of 70 nm width that had improved dispersibility and stability were produced. The diameters of the carbon nanoparticles and their dispersibility were dependent on the pore distribution and surface areas of the activated carbon subjected to the ACC treatment. The ACC process facilitated the preparation of carbon nanoparticles from activated carbon derived from biomass, and is, therefore, an important strategy for the sustainable production of a sought-after and valuable resource.

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3