Author:
Jin Zhi,Fu Yuejin,Chen Qian,Zeng Zhen
Abstract
AbstractTo determine the surface relaxivity of pores plays a vital role in the application of time-domain nuclear magnetic resonance (TD-NMR) technology to porous structure characterization for wood. Currently, the surface relaxivity of pores is calibrated using a standard sample with a pore size of the same order as the wood pore system. However, the uniformly distributed pore size of standard sample is unfit to accurately indicate the complexity of porous structure of wood, which significantly affects the accuracy of test results. By integrating the TD-NMR technology with mercury intrusion porosimetry (MIP), the surface relaxivity of macropores in the lumen of wood cells is calibrated in this study using the tested sample, so as to avoid the error in measurement as caused by existing method. Data processing is performed using several mathematical methods including interpolation arithmetic and least square principle. Notably, the node segmentation method is applied to identify the T2 boundary of pores in cell lumen and to classify the porous structure of cell lumen into different pore systems. The approach proposed in this study is demonstrated to be effective in improving the accuracy of TD-NMR technology for characterizing the porous structure of wood. Also, it contributes a potential solution to accounting for the porous structure of wood based on the phenomenon of pore relaxation, which can improve the understanding of wood pore conformation.
Funder
National Natural Science Foundation for Youth
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Wang ZG, Zhang XF, Ding ML, Yao JF (2022) Aminosilane-modified wood sponge for efficient CO2 capture. Wood Sci Technol 56(3):691–702
2. Lu Y (2022) Wood supramolecular science: scientific significance and prospects. Chin J Wood Sci Technol 36(2):1–10
3. Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2017) Dimensions of biological cellulose nanocrystals maximize fracture strength. Acs Macro Lett 3(1):64–69
4. Zhao G (2002) Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites. J Beijing For Univ 24(5):204–207
5. Jin Z, Ma J, Fu Y (2021) Research on the distribution of cell wall components and porosity in populous nigra tension wood fiber based on Raman imaging data. Spectrosc Spect Anal 41(3):801–806