Preliminary evaluation for quality of dimension lumber in four common softwoods in Mongolia

Author:

Sarkhad Murzabyek,Ishiguri FutoshiORCID,Nezu Ikumi,Tumenjargal Bayasaa,Takahashi Yusuke,Baasan Bayartsetseg,Chultem Ganbaatar,Ohshima Jyunichi,Yokota Shinso

Abstract

AbstractThe quality of dimension lumber (2 by 4 lumber) was preliminarily investigated in four common Mongolian softwoods: Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. to produce high quality dimension lumber for structural use. In total 61, 39, 67, and 37 pieces of lumber were prepared for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. The lumber was visually graded and then tested in static bending to obtain the 5% lower tolerance limits at 75% confidence level (f0.05) of the modulus of elasticity (MOE) and the modulus of rupture (MOR). In addition, the effects of sawing patterns on bending properties were also analyzed. The f0.05 of the MOE and MOR were 4.75 GPa and 15.6 MPa, 3.39 GPa and 11.0 MPa, 3.78 GPa and 11.7 MPa, and 6.07 GPa and 22.3 MPa for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. These results suggested that with a few exceptions, characteristic values of MOR in the four common Mongolian softwoods resembled those in similar commercial species already used. In visual grading, over 80% of total lumber was assigned to select structural and No. 1 grades in Pinus sylvestris and Pinus sibirica, whereas approximately 40% of total lumber in L. sibirica was No. 3 and out of grades. Sawing patterns affected bending properties in Pinus sylvestris and L. sibirica, but did not affect Pinus sibirica and Picea obovata. Dynamic Young's modulus was significantly correlated with bending properties of dimension lumber for the four species. Based on the results, it was concluded that dimension lumber for structural use can be produced from the four common Mongolian softwoods.

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference36 articles.

1. Ministry of Environment, Green Development and Tourism (2016) Forest resource in Mongolia. Forest Study and Development Center, Ulaanbaatar (In Mongolia)

2. FAO (2018) Yearbook of forest products. https://www.fao.org/3/cb0513m/CB0513M.pdf. Accessed on 30 Aug 2019

3. Kretschmann DE, Bendtsen BA (1992) Ultimate tensile stress and modulus of elasticity of fast-grown plantation loblolly pine lumber. Wood Fiber Sci 24:189–203

4. Kliger IR, Perstorper M, Johansson G, Pellicane PJ (1995) Quality of timber products from Norway spruce. Part 3. Influence of spatial position and growth characteristics on bending stiffness and strength. Wood Sci Technol 29:397–410

5. Larsson D, Ohlsson S, Perstorper M, Brundin J (1998) Mechanical properties of sawn timber from Norway spruce. Holz Roh Werkst 56:331–338

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3