Abstract
AbstractThe quality of dimension lumber (2 by 4 lumber) was preliminarily investigated in four common Mongolian softwoods: Pinus sylvestris L., Pinus sibirica Du Tour, Picea obovata Ledeb., and Larix sibirica Ledeb. to produce high quality dimension lumber for structural use. In total 61, 39, 67, and 37 pieces of lumber were prepared for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. The lumber was visually graded and then tested in static bending to obtain the 5% lower tolerance limits at 75% confidence level (f0.05) of the modulus of elasticity (MOE) and the modulus of rupture (MOR). In addition, the effects of sawing patterns on bending properties were also analyzed. The f0.05 of the MOE and MOR were 4.75 GPa and 15.6 MPa, 3.39 GPa and 11.0 MPa, 3.78 GPa and 11.7 MPa, and 6.07 GPa and 22.3 MPa for Pinus sylvestris, Pinus sibirica, Picea obovata, and L. sibirica, respectively. These results suggested that with a few exceptions, characteristic values of MOR in the four common Mongolian softwoods resembled those in similar commercial species already used. In visual grading, over 80% of total lumber was assigned to select structural and No. 1 grades in Pinus sylvestris and Pinus sibirica, whereas approximately 40% of total lumber in L. sibirica was No. 3 and out of grades. Sawing patterns affected bending properties in Pinus sylvestris and L. sibirica, but did not affect Pinus sibirica and Picea obovata. Dynamic Young's modulus was significantly correlated with bending properties of dimension lumber for the four species. Based on the results, it was concluded that dimension lumber for structural use can be produced from the four common Mongolian softwoods.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Ministry of Environment, Green Development and Tourism (2016) Forest resource in Mongolia. Forest Study and Development Center, Ulaanbaatar (In Mongolia)
2. FAO (2018) Yearbook of forest products. https://www.fao.org/3/cb0513m/CB0513M.pdf. Accessed on 30 Aug 2019
3. Kretschmann DE, Bendtsen BA (1992) Ultimate tensile stress and modulus of elasticity of fast-grown plantation loblolly pine lumber. Wood Fiber Sci 24:189–203
4. Kliger IR, Perstorper M, Johansson G, Pellicane PJ (1995) Quality of timber products from Norway spruce. Part 3. Influence of spatial position and growth characteristics on bending stiffness and strength. Wood Sci Technol 29:397–410
5. Larsson D, Ohlsson S, Perstorper M, Brundin J (1998) Mechanical properties of sawn timber from Norway spruce. Holz Roh Werkst 56:331–338
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献