Author:
Adutwum Jerry Oppong,Sakagami Hiroki,Koga Shinya,Matsumura Junji
Abstract
AbstractTo test whether radial variation of wood specific gravity (WSG) is controlled by tree age or tree size in teak (Tectona grandis L.f) plantation trees, opposing different-length pith-to-bark strips which represents the differential lateral growth rate was compared using mixed-effects model which considers the heterogeneity of variances and dependency in the data to gain insight into the stochastic processes that govern the wood formation process. Various models were tested in devising an appropriate radial WSG model. Models that accounted for serial correlation in WSG data performed better than the simple structure that assumes zero correlation between measurements. The autoregressive plus random tree effect structure performed better in describing the radial variation pattern. The variability of the data related to random fluctuations during tree development and the wood formation process is modeled by the autoregressive parameter revealing the intrinsic complexity of wood formation. Since they cannot be attributed to observed factors, models should consider temporal or serial correlations when assessing wood quality. The results revealed that tree age is a decisive factor in controlling the WSG of wood, while tree size is statistically less important. Furthermore, the core wood production period varies with the growth rate. It is shown that the core wood area decreased with slow growth. Findings presented here appear to provide the first demonstration of radial variation in WSG with respect to growth rate and age for planted teak growing in Ghana.
Publisher
Springer Science and Business Media LLC
Reference81 articles.
1. FAO (2010) Global forest resources assessment. Country report, Ghana, Rome FRA 077.
2. Apertorgbor MM, Roux J (2015) Diseases of plantation forestry trees in southern Ghana. Int J Phytopathol 4:5–13
3. Verhaegen D, Forfana IJ, Logossa ZA, Ofori D (2010) What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia? Tree Genet Genomes 6:717–733
4. Lachenbruch B, Moore JR, Evans R (2011) Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. In: Meinzer FCC, Lachenbruch B, Dawson TEE (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht
5. Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer, Berlin, Heidelberg, New York