In-depth studies on the modifying effects of natural ageing on the chemical structure of European spruce (Picea abies) and silver fir (Abies alba) woods

Author:

Ghavidel AmirORCID,Scheglov AnnaORCID,Karius Volker,Mai CarstenORCID,Tarmian Asghar,Vioel WolfgangORCID,Vasilache VioricaORCID,Sandu IonORCID

Abstract

Abstract Wood is usually stable under relatively dry conditions but may still undergo slow deterioration. The type of deterioration and how these processes affect the wood are important questions that need consideration if old wooden structures are to be studied and properly preserved. The aim of this paper is to establish the main structural and morphological differences between new and naturally aged European spruce (~ 150–200 years) and silver fir wood (~ 150 years). Naturally aged European spruce (a) was sourced from an outdoor part of a building constructed in the seventeenth century and naturally aged European spruce (b) were obtained from a furniture item located in a historical building from the eighteenth century. The principal age-induced changes in fir are the degradation of C–O and C=O groups in hemicellulose, according to the FTIR analysis. Degradation of cellulose and hemicelluloses was observed for spruce, with a greater effect seen in the indoor aged sample. X-ray photoelectron spectroscopy (XPS) showed that after aging C–C/C–H peaks were smaller in the spruce and fir samples, while C–O and O–C–O peaks were larger. The crystallinity index (CrI) obtained by X-ray diffraction showed that due to weathering the CrI of naturally aged spruce (a) increased compared to the new wood. The CrI of the aged spruce (b) and aged fir was lower than in the new woods. The ratios for the spruce sample, which aged indoors, were higher than those for the one aged outdoors. According to the observations made in this study, hemicellulose and cellulose are easily degraded under environmental conditions.

Funder

Bundesministerium für Bildung, Wissenschaft und Kultur

German Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference38 articles.

1. Spiridon P, Sandu ICA, Nica L, Iurcovschi CT, Colbu DE, Negru IC, Vasilache V, Cristache RA, Sandu I (2017) Archaeometric and chemometric studies involved in the authentication of old heritage artefacts II. Old linden and poplar wood put into work. Rev Chim 68(10):2422–2430

2. Sandu ICA, Luca C, Sandu I, Atym P (2001) Research regarding the soft wood supports degradation evaluation in old painting, using preparation layers. I. Chemical composition and technical analysis. Rev Chim 52(1–2):46–52

3. Hill CAS (2007) Wood modification: chemical, thermal and other processes. Wiley, Chichester

4. Kránitz K, Sonderegger W, Bues CT, Niemz P (2016) Effects of aging on wood: a literature review. Wood Sci Technol 50(1):7–22

5. Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York, p 1964

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3