Abstract
AbstractBamboo is readily discolored by mold fungi, which greatly limits its applications. An effective antifungal agent, copper(II) chloride (CuCl2)-grafted silica gel, was prepared by a sol–gel process using tetraethoxysilane (TEOS)/3-aminopropyltriethoxysilane (APTES) mixtures. The elemental composition and the chemical combinations of homogeneous sol mixture (HSM) and bamboo were determined via Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM–EDS). The mold resistance of bamboo treated with HSM, alkaline copper quat (ACQ), chromated copper arsenate (CCA), and purified water was characterized by an indoor mold test. The micro-morphology of bamboo treated with HSM was investigated using scanning electron microscopy (SEM). HSM penetrated into the bamboo vessels, and formed xerogels, which was able to coordinate copper(II) cations. SEM–EDS investigations suggest that Si–O–Cu linkages may be formed through an exchange reaction between silanol groups and copper complexes. The bamboo samples treated with HSM showed highly efficient mold resistance due to a good penetration of HSM. Furthermore, no fungal hyphae were found in the structure of HSM-treated bamboo after a 5-week mold test. The copper complexes grafted to silica gel developed in this work provide an efficient antifungal agent for a wide range of potential applications in bamboo protection.
Funder
Natural Science Foundation of Guizhou Province of China
Guizhou province science and technology supporting plan
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Liese W, Köhl M (2015) Bamboo—the plant and its uses. Springer International Publishing, USA
2. Kim YS, Funada R, Singh AP (2016) Secondary xylem biology-origins, functions, and applications. Academic Press, Cambridge
3. Jiang ZH (2008) Bamboo and rattan in the world. China Forestry Publishing House, Beijing (In Chinese)
4. Palanti S, Predieri G, Vignali F, Feci E, Casoli A, Conti E (2011) Copper complexes grafted to functionalized silica gel as wood preservatives against the brown rot fungus Coniophora puteana. Wood Sci Technol 45(4):707–718
5. Mahr MS, Hübert T, Stephan I, Bücker M, Militz H (2013) Reducing copper leaching from treated wood by sol–gel derived TiO2 and SiO2 depositions. Holzforschung 67(4):429–435
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献