Properties of low-density cement-bonded composite panels manufactured from polystyrene and jute stick particles

Author:

Rana Md Nasim,Islam Md NazrulORCID,Nath Suresh Kumar,Das Atanu Kumar,Ashaduzzaman Md,Shams Md Iftekhar

Abstract

Abstract This study was conducted to evaluate the properties of cement-bonded composite (CBC) manufactured using jute stick particles and expanded polystyrene (EPS) beads to reduce the density of CBC for mitigating the main limitation of CBC in its applications. The CBCs were manufactured by using cement, jute stick particle, EPS and jute fiber by cold pressing having the pressure of 5 MPa and pressing time of 24 h. CBCs were also manufactured by replacing the jute stick particles with EPS beads, the processing conditions remaining the same. There were at least 5 replications for each type of board. Waste jute fibers were added for improving the degenerated mechanical properties of CBC caused by the addition of EPS beads. Important physical properties, i.e., density, water absorption (WA) and thickness swelling (TS) and mechanical properties, i.e., modulus of elasticity (MOE) and modulus of rupture (MOR) of the manufactured CBCs were tested following the Malaysian Standards. Higher percentage of EPS beads significantly reduced the density of CBCs and the lowest density (0.91 ± 0.02 g/cm3) was found when the EPS beads replaced 30% jute stick particles. As expected, mechanical properties decreased with the gradual replacement of jute stick particles by EPS beads. However, the degraded mechanical properties significantly increased when waste jute fibers were added in the CBCs. Addition of EPS beads in CBCs reduced the density, which might increase the potentiality for the utilization of cement-bonded composites for various applications.

Funder

World Bank Group

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3