Potential of machine learning approaches for predicting mechanical properties of spruce wood in the transverse direction

Author:

Chen Shuoye,Shiina Rei,Nakai Kazushi,Awano Tatsuya,Yoshinaga Arata,Sugiyama JunjiORCID

Abstract

AbstractTo predict the mechanical properties of wood in the transverse direction, this study used machine learning to extract the anatomical features of wood from cross-sectional stereograms. Specimens with different orientations of the ray parenchyma cell were prepared, and their modulus of elasticity (MOE) and modulus of rupture (MOR) were measured by a three-point bending test. The orientation of the ray parenchyma cell and wood density ($$\rho $$ ρ ) were used as parameters for the MOE and MOR prediction. Conventional machine learning algorithms and artificial neural network were used, and satisfactory results were obtained in both cases. A regular convolutional neural network (CNN) and a density-informed CNN were used to automatically extract anatomical features from the specimens’ cross-sectional stereograms to predict the mechanical properties. The regular CNN achieved acceptable but relatively low accuracy in both the MOE and MOR prediction. The reason for this may be that $$\rho $$ ρ information could not be satisfactorily extracted from the images, because the images represented a limited region of the specimen. For the density-informed CNN, the average prediction coefficient for both the MOE and MOR drastically increased when $$\rho $$ ρ information was provided. A regression activation map was constructed to understand the representative anatomical features that are strongly related to the prediction of mechanical properties. For the regular CNN, the latewood region was highly activated in both the MOE and MOR prediction. It is believed that the ratio and orientation of latewood were successfully extracted for the prediction of the considered mechanical properties. For the density-informed CNN, the activated region is different. The earlywood region was activated in the MOE prediction, while the transition region between the earlywood and latewood was activated in the MOR prediction. These results may provide new insights into the relationship between the anatomical features and mechanical properties of wood.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3