Research on the wood processing method of helium-assisted laser process

Author:

Yang Chunmei,Tian Xinchi,Xue Bo,Liu Qingwei,Zhang Jiawei,Liu Jiuqing,Yu WenjiORCID

Abstract

AbstractIn order to promote the development of environmental protection, and the usage rate of green energy utilization, a progressive, innovative laser process method employing helium assisted is proposed, which optimizes the joint cutting process under the same energy consumption. This method provides a new idea for the wood process industry. The uniqueness of this paper establishes a mathematical model to address the diffusion of helium injection and the heat transfer of the laser beam on the processed surface. From the results, it can be exhibited that the oxygen concentration reduces when the helium is injected on the processed surface. The helium could destroy the combustion-supporting conditions and decrease the combustion zone of the processed joint cutting. Thus, the carbonized area of the processed surface is reduced, which could effectively enhance the processing quality of joint cutting. Notably, the helium with injection speed forms a sweeping effect on the processed surface, which could remove parts of the carbonized particles and residues on the processed surface, as well as improve the processing quality. Comparing the traditional laser process and helium-assisted laser process, the gas-assisted laser process owns higher process quality than that of traditional laser processing and cutting. In detail, it features the advantages of smaller joint cutting width, lower surface roughness and smoother surface. Eventually, a mathematical model based on the response surface method with the evaluation criteria of the kerf width, kerf depth, and surface roughness is established to analyze the interaction of laser power, cutting speed and inert gas pressure on the response factors. Comparing the error between the predicted and experimental measurement value, and the optimized process parameters could be acquired. In this paper, the helium-assisted laser process method proposed is meaningful and encouraging, which not only obtains better processing quality, but also provides a guide for developing green industry.

Funder

Ministry of finance, Ministry of education, Central University

Science and Technology Department, Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference17 articles.

1. Xiang SL, Li CS (2010) Progress in wood processing and application technology. Science Press, Beijing

2. Wang BY (1994) Application of laser cutting in wood processing. China forestry science and technology 01:25–27

3. Zhang SH (2005) Research on laser cutting technology. D Sc Tech dissertation, Xi’an University of Technology.

4. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci 74:401–477

5. Naderi N, Legacey S, Chin SL (1999) Preliminary investigations of ultrafast intense laser wood processing. For Prod J 49(6):72–76

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3