Tracing radioactive cesium in stem wood of three Japanese conifer species 3 years after the Fukushima Dai-ichi Nuclear Power Plant accident

Author:

Ohashi ShintaORCID,Kuroda Katsushi,Fujiwara Takeshi,Takano Tsutomu

Abstract

AbstractTo understand the dynamics of accident-derived radioactive cesium (137Cs) in stem wood that had a substantial amount of heartwood at the time of the Fukushima Dai-ichi Nuclear Power Plant accident, the radial and vertical distributions of 137Cs activity concentration in stem wood of Japanese cedar (Cryptomeria japonica), cypress (Chamaecyparis obtusa), and larch (Larix kaempferi) were investigated. In addition, the natural distribution of stable cesium (133Cs), rubidium (85Rb), and potassium (39K) concentrations was analyzed to determine the characteristics of 137Cs distribution. Wood disks were collected from the tree stems of six cedars, three cypresses, and two larches at multiple heights in 2014, and the concentrations were measured every 2 cm in the radial direction. 137Cs distribution in stem wood differed among tree species, sampling site, and vertical position of the stem within a tree. Statistical analyses suggested that the radial distribution of 137Cs within the heartwood can be explained by the heartwood moisture content and the distance from the treetop, regardless of species, while the distribution between sapwood and heartwood was dependent on the heartwood cross-sectional area and was additionally different between larch and other species. Similarly, the heartwood/sapwood concentration ratios of stable alkali metals differed between larch and the other species. In the larch, the ratio was ca. 0.5 for all elements, but the ratio was over 1.0 and differed among elements in the other species. Consequently, the species-specific difference in the distribution of 137Cs between sapwood and heartwood was considered to be due to different activity levels of radial transport toward the heartwood. The radial variation pattern of the 137Cs/133Cs concentration ratio showed that less 137Cs was transferred to the inner heartwood compared with the 133Cs distribution pattern in many trees; however, there was also a tree in which 137Cs was excessively transferred to the inner heartwood compared with the 133Cs distribution pattern. Such patterns may result from a combination of significant foliar uptake of 137Cs and poor root uptake after the accident, in addition to the high moisture content of the heartwood.

Funder

Forestry and Forest Products Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3