The effect of moisture on the properties of cement-bonded particleboards made with non-traditional raw materials

Author:

Melichar TomasORCID,Meszarosova Lenka,Bydzovsky Jiri,Ledl Matej,Vasas Silvestr

Abstract

AbstractThe paper presents research into the changes of properties in cement-bonded particleboards caused by moisture saturation over the course of 504 h. Three particleboard variants were tested, all at the age of 18 months. The first is a standard production-line board manufactured by CIDEM Hranice, a.s. (identified as CP-R). The other two variants were modified by by-products of the particleboard manufacturing process—dust (CP-D) and a particulate mixture (CP-P). The experiment observed changes in the boards’ dimensions, volume, and mass. The effect of moisture on their basic material properties was also investigated. While the boards were being saturated by water, changes in their structure were examined using an optical microscope. It was found that the boards behave differently depending on their composition. Also there were differences in the dynamics of the property changes. The modified particleboards are more susceptible to dimensional and volume changes. Both, volume and mass undergo the most significant changes during the first 24 h. Cracks and air voids inside the wood chips begin to close upon contact with water as a result of swelling. It was observed by optical microscopy that this process occurs within 3 to 5 min since immersion in the water bath. Between 24 and 96 h the rate at which the air voids and pores are closing begins to decrease and there is a difference in the dynamics of mass and volume changes as well. Wet–dry cycling of the boards was analysed as well. Temperature and moisture fluctuations negatively affected particleboard behaviour and properties. Strength dropped up to 50%. Wider cracks in structure of the particleboards were detected by optical microscopy, namely in ITZ (internal transition zone) of cement matrix and spruce chips.

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference57 articles.

1. Odeyemi SO, Abdulwahab R, Adeniyi AG, Atoyebi OD (2020) Physical and mechanical properties of cement-bonded particle board produced from African balsam tree (Populous Balsamifera) and periwinkle shell residues. Results Eng 6:100–126

2. Wang L, Yu IKM, Tsang DCW, Yu K, Li S, Poon CS, Dai J-G (2018) Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Constr Build Mater 159:54–63

3. Miranda de Lima AJ, Iwakiri S, Satyanarayana KG, Lomelí-Ramírez MG (2020) Preparation and characterization of wood-cement particleboards produced using metakaolin, calcined ceramics and residues of Pinus spp. J Build Eng 32:101722

4. Caprai V, Gauvin F, Schollbach K, Brouwers HJH (2019) MSWI bottom ash as binder replacement in wood cement composites. Constr Build Mater 196:672–680

5. Nadhari WNAW, Danish M, Nasir MSRM, Geng BJ (2019) Mechanical properties and dimensional stability of particleboard fabricated from steam pre-treated banana trunk waste particles. J Build Eng 26:100848

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3