Abstract
AbstractThe paper presents research into the changes of properties in cement-bonded particleboards caused by moisture saturation over the course of 504 h. Three particleboard variants were tested, all at the age of 18 months. The first is a standard production-line board manufactured by CIDEM Hranice, a.s. (identified as CP-R). The other two variants were modified by by-products of the particleboard manufacturing process—dust (CP-D) and a particulate mixture (CP-P). The experiment observed changes in the boards’ dimensions, volume, and mass. The effect of moisture on their basic material properties was also investigated. While the boards were being saturated by water, changes in their structure were examined using an optical microscope. It was found that the boards behave differently depending on their composition. Also there were differences in the dynamics of the property changes. The modified particleboards are more susceptible to dimensional and volume changes. Both, volume and mass undergo the most significant changes during the first 24 h. Cracks and air voids inside the wood chips begin to close upon contact with water as a result of swelling. It was observed by optical microscopy that this process occurs within 3 to 5 min since immersion in the water bath. Between 24 and 96 h the rate at which the air voids and pores are closing begins to decrease and there is a difference in the dynamics of mass and volume changes as well. Wet–dry cycling of the boards was analysed as well. Temperature and moisture fluctuations negatively affected particleboard behaviour and properties. Strength dropped up to 50%. Wider cracks in structure of the particleboards were detected by optical microscopy, namely in ITZ (internal transition zone) of cement matrix and spruce chips.
Funder
Grantová Agentura České Republiky
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Odeyemi SO, Abdulwahab R, Adeniyi AG, Atoyebi OD (2020) Physical and mechanical properties of cement-bonded particle board produced from African balsam tree (Populous Balsamifera) and periwinkle shell residues. Results Eng 6:100–126
2. Wang L, Yu IKM, Tsang DCW, Yu K, Li S, Poon CS, Dai J-G (2018) Upcycling wood waste into fibre-reinforced magnesium phosphate cement particleboards. Constr Build Mater 159:54–63
3. Miranda de Lima AJ, Iwakiri S, Satyanarayana KG, Lomelí-Ramírez MG (2020) Preparation and characterization of wood-cement particleboards produced using metakaolin, calcined ceramics and residues of Pinus spp. J Build Eng 32:101722
4. Caprai V, Gauvin F, Schollbach K, Brouwers HJH (2019) MSWI bottom ash as binder replacement in wood cement composites. Constr Build Mater 196:672–680
5. Nadhari WNAW, Danish M, Nasir MSRM, Geng BJ (2019) Mechanical properties and dimensional stability of particleboard fabricated from steam pre-treated banana trunk waste particles. J Build Eng 26:100848
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献