Author:
Giovannini Marcello,Verduci Elvira,Salvatici Elisabetta,Paci Sabrina,Riva Enrica
Abstract
Abstract
Despite the appearance of new treatment, dietary approach remains the mainstay of PKU therapy. The nutritional management has become complex to optimize PKU patients' growth, development and diet compliance. This paper review critically new advances and challenges that have recently focused attention on potential relevant of LCPUFA supplementation, progress in protein substitutes and new protein sources, large neutral amino acids and sapropterin. Given the functional effects, DHA is conditionally essential substrates that should be supplied with PKU diet in infancy but even beyond. An European Commission Programme is going on to establish quantitative DHA requirements in this population. Improvements in the palatability, presentation, convenience and nutritional composition of protein substitutes have helped to improve long-term compliance with PKU diet, although it can be expected for further improvement in this area. Glycomacropeptide, a new protein source, may help to support dietary compliance of PKU subject but further studies are needed to evaluate this metabolic and nutritional issues. The PKU diet is difficult to maintain in adolescence and adult life. Treatment with large neutral amino acids or sapropterin in selected cases can be helpful. However, more studies are necessary to investigate the potential role, dose, and composition of large neutral amino acids in PKU treatment and to show long-term efficacy and tolerance. Ideally treatment with sapropterin would lead to acceptable blood Phe control without dietary treatment but this is uncommon and sapropterin will usually be given in combination with dietary treatment, but clinical protocol evaluating adjustment of PKU diet and sapropterin dosage are needed.
In conclusion PKU diet and the new existing treatments, that need to be optimized, may be a complete and combined strategy possibly positive impacting on the psychological, social, and neurocognitive life of PKU patients.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference42 articles.
1. Scriver CR, Kaufman S, Eisensmith RC, Woo SLC: The hyperphenylalaninemias. The metabolic and molecular bases of inherited disease. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D. 1995, McGraw-Hill, New York, 1015-1075. 7
2. Blau N, van Spronsen FJ, Levy HL: Phenylketonuria. Lancet. 2010, 376: 1417-1427. 10.1016/S0140-6736(10)60961-0.
3. Ahring K, Bélanger-Quintana A, Dokoupil K, Gokmen-Ozel H, Lammardo AM, MacDonald A, Motzfeld K, Nowacka M, Robert M, van Rijn M: Blood phenylalanine control in phenylketonuria: a survey of 10 European centres. Eur J Clin Nutr. 2011, 65: 275-278. 10.1038/ejcn.2010.258.
4. Huijbregts SC, de Sonneville LM, Licht R, van Spronsen FJ, Verkerk PH, Sergeant JA: Sustained attention and inhibition of cognitive interference in treated phenylketonuria: association with concurrent and lifetime phenylalanine concentrations. Neuropsychologia. 2002, 40: 7-15. 10.1016/S0028-3932(01)00078-1.
5. Burgard P, Schmidt E, Rupp A, Schneider W, Bremer HJ: Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr. 1996, 155 (Suppl 1): S33-38.
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献