Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle

Author:

Merrill John F,Thomson David M,Hardman Shalene E,Hepworth Squire D,Willie Shelby,Hancock Chad R

Abstract

Abstract Background As a cellular energy sensor, the 5’AMP-activated protein kinase (AMPK) is activated in response to energy stresses such as hypoxia and muscle contraction. To determine effects of iron deficiency on AMPK activation and signaling, as well as the AMPK subunit composition in skeletal muscle, rats were fed a control (C=50-58 mg/kg Fe) or iron deficient (ID=2-6 mg/kg Fe) diet for 6–8 wks. Results Their respective hematocrits were 47.5% ± 1.0 and 16.5% ± 0.6. Iron deficiency resulted in 28.3% greater muscle fatigue (p<0.01) in response to 10 min of stimulation (1 twitch/sec) and was associated with a greater reduction in phosphocreatine (C: Resting 24.1 ± 0.9 μmol/g, Stim 13.1 ± 1.5 μmol/g; ID: Resting 22.7 ± 1.0 μmol/g, Stim 3.2 ± 0.7 μmol/g; p<0.01) and ATP levels (C: Resting 5.89 ± 0.48 μmol/g, Stim 6.03 ± 0.35 μmol/g; ID: Resting 5.51 ± 0.20 μmol/g, Stim 4.19 ± 0.47 μmol/g; p<0.05). AMPK activation increased with stimulation in muscles of C and ID animals. A reduction in Cytochrome c and other iron-dependent mitochondrial proteins was observed in ID animals (p<0.01). The AMPK catalytic subunit (α) was examined because both isoforms are known to play different roles in responding to energy challenges. In ID animals, AMPKα2 subunit protein content was reduced to 71.6% of C (p<0.05), however this did not result in a significant difference in resting AMPKα2 activity. AMPKα1 protein was unchanged, however an overall increase in AMPKα1 activity was observed (C: 0.91 pmol/mg/min; ID: 1.63 pmol/mg/min; p<0.05). Resting phospho Acetyl CoA Carboxylase (pACC) was unchanged. In addition, we observed significant reductions in the β2 and γ3 subunits of AMPK in response to iron deficiency. Conclusions This study indicates that chronic iron deficiency causes a shift in the expression of AMPKα, β, and γ subunit composition. Iron deficiency also causes chronic activation of AMPK as well as an increase in AMPKα1 activity in exercised skeletal muscle.

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

Reference53 articles.

1. Brooks GA, Henderson SA, Dallman PR: Increased glucose dependence in resting, iron-deficient rats. Am J Physiol. 1987, 253: E461-E466.

2. Henderson SA, Dallman PR, Brooks GA: Glucose turnover and oxidation are increased in the iron-deficient anemic rat. Am J Physiol. 1986, 250: E414-E421.

3. Corton JM, Gillespie JG, Hardie DG: Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol. 1994, 4: 315-324. 10.1016/S0960-9822(00)00070-1.

4. Worldwide prevalence of anaemia 1993–2005: WHO Global Database on Anaemia. In Book Worldwide prevalence of anaemia 1993–2005: WHO Global Database on Anaemia. Edited by: Benoist B, McLean E, Egli I, Cogswell M. 2002, Geneva, Switzerland: World Health Organization

5. Davies KJ, Maguire JJ, Brooks GA, Dallman PR, Packer L: Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am J Physiol. 1982, 242: E418-E427.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3