Author:
Davis McKale R,Hester Kristen K,Shawron Krista M,Lucas Edralin A,Smith Brenda J,Clarke Stephen L
Abstract
Abstract
Background
Previous studies examining the metabolic consequences of dietary iron deficiency have reported elevated serum glucose concentrations in iron-deficient animals. Importantly, the majority of these findings were observed using an earlier version of a laboratory animal diet (AIN-76A) in which the primary carbohydrate source was sucrose – a disaccharide known to negatively impact both glucose and lipid homeostasis. The AIN-76A diet formula was improved in 1993 (AIN-93) to optimize animal nutrition with a major change being the substitution of cornstarch for sucrose. Therefore, we sought to examine the effects of iron deficiency on steady-state glucose homeostasis and the hepatic expression of glucose- and lipid-related genes in rats fed an iron-deficient diet based on either an AIN-76A or AIN-93 diet.
Methods
The study design consisted of 6 treatment groups: control (C; 40 mg Fe/kg diet), iron deficient (ID; ≤ 3 mg Fe/kg diet), or pair-fed (PF; 40 mg Fe/kg) fed either an AIN-76A or AIN-93 diet for 21 d. Hemoglobin and hematocrit were measured in whole blood. Serum insulin and cortisol were measure by ELISA. Serum glucose and triacylglycerols were measured by standard colorimetric enzyme assays. Alterations in hepatic gene expression were determined by real-time qPCR.
Results
Hemoglobin and hematocrit were significantly reduced in both ID groups compared to the C and PF groups. Similarly, animals in the both ID groups exhibited elevated steady-state levels of blood glucose and insulin, and significantly decreased levels of circulating cortisol compared to their respective PF controls. Serum triacyglycerols were only increased in ID animals consuming the AIN-76A diet. Hepatic gene expression analyses revealed a ~4- and 3-fold increase in the expression of glucokinase and pyruvate dehydrogenase kinase-4 mRNA, respectively, in the ID group on either diet compared to their respective PF counterparts. In contrast, the expression of lipogenic genes was significantly elevated in the AIN-76 ID group, while expression of these genes was unaffected by iron status in the AIN-93 ID group.
Conclusions
These results indicate that an impaired iron status is sufficient to alter glucose homeostasis, though alterations in lipid metabolism associated with ID are only observed in animals receiving the AIN-76A diet.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference39 articles.
1. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B: Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutr. 2009, 12 (4): 444-454. 10.1017/S1368980008002401.
2. Borel MJ, Beard JL, Farrell PA: Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol. 1993, 264: E380-E390.
3. Davies KJ, Donovan CM, Refino CJ, Brooks GA, Packer L, Dallman PR: Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat. Am J Physiol. 1984, 246: E535-E543.
4. Farrell PA, Beard JL, Druckenmiller M: Increased insulin sensitivity in iron-deficient rats. J Nutr. 1988, 118: 1104-1109.
5. Davis MR, Rendina E, Peterson SK, Lucas EA, Smith BJ, Clarke SL: Enhanced expression of lipogenic genes may contribute to hyperglycemia and alterations in plasma lipids in response to dietary iron deficiency. Genes Nutr. 2012, 7: 415-425. 10.1007/s12263-011-0278-y.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献