Systematic Evaluation of Key L-Carnitine Homeostasis Mechanisms during Postnatal Development in Rat

Author:

Ling Binbing,Aziz Caroline,Alcorn Jane

Abstract

Abstract Background The conditionally essential nutrient, L-carnitine, plays a critical role in a number of physiological processes vital to normal neonatal growth and development. We conducted a systematic evaluation of the developmental changes in key L-carnitine homeostasis mechanisms in the postnatal rat to better understand the interrelationship between these pathways and their correlation to ontogenic changes in L-carnitine levels during postnatal development. Methods mRNA expression of heart, kidney and intestinal L-carnitine transporters, liver γ-butyrobetaine hydroxylase (Bbh) and trimethyllysine hydroxylase (Tmlh), and heart carnitine palmitoyltransferase (Cpt) were measured using quantitative RT-PCR. L-Carnitine levels were determined by HPLC-UV. Cpt and Bbh activity were measured by a spectrophotometric method and HPLC, respectively. Results Serum and heart L-carnitine levels increased with postnatal development. Increases in serum L-carnitine correlated significantly with postnatal increases in renal organic cation/carnitine transporter 2 (Octn2) expression, and was further matched by postnatal increases in intestinal Octn1 expression and hepatic γ-Bbh activity. Postnatal increases in heart L-carnitine levels were significantly correlated to postnatal increases in heart Octn2 expression. Although cardiac high energy phosphate substrate levels remained constant through postnatal development, creatine showed developmental increases with advancing neonatal age. mRNA levels of Cpt1b and Cpt2 significantly increased at postnatal day 20, which was not accompanied by a similar increase in activity. Conclusions Several L-carnitine homeostasis pathways underwent significant ontogenesis during postnatal development in the rat. This information will facilitate future studies on factors affecting the developmental maturation of L-carnitine homeostasis mechanisms and how such factors might affect growth and development.

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3