Author:
Blanco-Rojo Ruth,Baeza-Richer Carlos,López-Parra Ana M,Pérez-Granados Ana M,Brichs Anna,Bertoncini Stefania,Buil Alfonso,Arroyo-Pardo Eduardo,Soria Jose M,Vaquero M Pilar
Abstract
Abstract
Background
Iron deficiency anaemia is a worldwide health problem in which environmental, physiologic and genetic factors play important roles. The associations between iron status biomarkers and single nucleotide polymorphisms (SNPs) known to be related to iron metabolism were studied in menstruating women.
Methods
A group of 270 Caucasian menstruating women, a population group at risk of iron deficiency anaemia, participated in the study. Haematological and biochemical parameters were analysed and 10 selected SNPs were genotyped by minisequencing assay. The associations between genetic and biochemical data were analysed by Bayesian Model Averaging (BMA) test and decision trees. Dietary intake of a representative subgroup of these volunteers (n = 141) was assessed, and the relationship between nutrients and iron biomarkers was also determined by linear regression.
Results
Four variants, two in the transferrin gene (rs3811647, rs1799852) and two in the HFE gene (C282Y, H63D), explain 35% of the genetic variation or heritability of serum transferrin in menstruating women. The minor allele of rs3811647 was associated with higher serum transferrin levels and lower transferrin saturation, while the minor alleles of rs1799852 and the C282Y and H63D mutations of HFE were associated with lower serum transferrin levels. No association between nutrient intake and iron biomarkers was found.
Conclusions
In contrast to dietary intake, these four SNPs are strongly associated with serum transferrin. Carriers of the minor allele of rs3811647 present a reduction in iron transport to tissues, which might indicate higher iron deficiency anaemia risk, although the simultaneous presence of the minor allele of rs1799852 and HFE mutations appear to have compensatory effects. Therefore, it is suggested that these genetic variants might potentially be used as markers of iron deficiency anaemia risk.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference39 articles.
1. World Health Organization: Worldwide prevalence of anaemia 1993-2005. WHO Global Database on Anaemia. Geneva; 2008.
2. World Health Organization: Assessing the iron status of populations. Geneva; 2007.
3. Whitfield JB, Treloar S, Zhu G, Powell LW, Martin NG: Relative importance of female-specific and non-female-specific effects on variation in iron stores between women. Br J Haematol 2003, 120: 860-866. 10.1046/j.1365-2141.2003.04224.x
4. Hentze MW, Muckenthaler MU, Galy B, Camaschella C: Two to tango: regulation of Mammalian iron metabolism. Cell 2010, 142: 24-38. 10.1016/j.cell.2010.06.028
5. Swinkels DW, Janssen MC, Bergmans J, Marx JJ: Hereditary hemochromatosis: genetic complexity and new diagnostic approaches. Clin Chem 2006, 52: 950-968. 10.1373/clinchem.2006.068684
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献