Author:
Shiraki Takayuki,Miura Yoshikazu,Sawada Tokihiko,Okada Toshie,Sakuraoka Yuhki,Muto Takashi,Kubota Keiichi
Abstract
Abstract
Background
Glycated albumin (GA) is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells.
Methods
Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA) and GA was measured under three different glucose concentrations, 3 mM (G3), 7 mM (G7), and 15 mM (G15), with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS), and the expression of iNOS-mRNA was investigated by real-time PCR.
Results
Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920), and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046), for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion.
Conclusion
GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference38 articles.
1. The DCCT Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications of insulin dependent diabetes mellitus. New Eng J Med. 1993, 329: 977-986. 10.1056/NEJM199309303291401.
2. Bunn HF, Gabby KH, Gallop PM: The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978, 200: 21-27. 10.1126/science.635569.
3. Cohen MP, Ziyadeh FN: Amadori glucose adducts modulate mesangial cell growth and collagen gene expression. Kidney Int. 1994, 45: 475-484. 10.1038/ki.1994.62.
4. Vlassara H, Palace MR: Diabetes and advanced glycation end products. J Intern Med. 2002, 251: 87-101. 10.1046/j.1365-2796.2002.00932.x.
5. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T: Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res. 2003, 23: 129-134.