Unveiling microbial diversity in deep geothermal fluids, from current knowledge and analogous environments

Author:

Bregnard DanaéORCID,Leins Alessio,Cailleau Guillaume,Vieth-Hillebrand Andrea,Eichinger Florian,Ianotta Joy,Hoffmann Richard,Uhde Joerg,Bindschedler Saskia,Regenspurg Simona,Junier Pilar

Abstract

AbstractExtreme environments on Earth host a large diversity of microbial life. Bacteria, archaea, and fungi are able to survive under one or several extreme conditions including extreme ranges of temperature, pressure, pH or salinity. Despite extensive research on extremophilic microorganisms, a relatively unexplored frontier within the study of the deep biosphere is the survey of the diversity of microorganisms inhabiting deep geothermal reservoirs used for energy production. These sites offer unique access to investigate life in the deep biosphere. The conditions in these reservoirs are often within the range of the known limits of life, which makes them a suitable habitat for various extremophilic microorganisms. Moreover, microbial-driven processes such as microbially induced scaling or corrosion can decrease the efficacy of geothermal power plant systems. The present review summarizes the current knowledge and uncertainties surrounding microbial life in deep geothermal reservoirs. As the knowledge in deep geothermal fluids is still scarce, the microbial diversity in analogous environments, such as surface geothermal springs, deep-sea hydrothermal vents or deep subsurface environments, is also summarized here. The high diversity of microorganisms inhabiting these analogous environments suggests that deep geothermal fluids may host an unsuspected microbial diversity. Moreover, the challenges associated to the study of microorganisms in geothermal fluids are reviewed. These include notably challenges linked to sampling, DNA extraction from low biomass samples, DNA amplification and sequencing of unknown communities, and biases induced by comparison of the sequences obtained to reference databases. Such biases are even stronger concerning fungi and archaea, as specific databases are less extensive than those for bacteria. A broader knowledge on microorganisms in deep geothermal fluids may not only allow to reduce the negative impact of microbial activity in geothermal power plants, but could also provide new insights into the evolution of microorganisms and their survival in extreme environments.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3