Parameter identification and range restriction through sensitivity analysis for a high-temperature heat injection test

Author:

Heldt StefanORCID,Wang Bo,Bauer Sebastian

Abstract

AbstractIn order to compensate for the variable mismatch between heat demand and heat production from renewable sources or waste heat, high-temperature aquifer thermal energy storage (HT-ATES) is a promising option. A reliable prediction of the energetic performance as well as thermal and hydraulic impacts of a HT-ATES requires a suitable model parameterization regarding the subsurface properties. In order to identify the subsurface parameters on which investigation efforts should be focused, we carried out an extensive sensitivity analysis of the thermal and hydraulic parameters for a high-temperature heat injection test (HIT) using numerical modeling of the governing coupled thermo-hydraulic processes. The heat injection test was carried out in a quaternary shallow aquifer using injection temperatures of about 75 °C over 5 days, accompanied by an extensive temperature monitoring. The sensitivity analysis is conducted for parameter ranges based on literature values, based on site investigation at the HIT site and based on a model calibrated to the measured temperature distribution following the heat injection. Comparing the parameter ranges thus obtained in this three-step approach allows to identify those parameters, for which model prediction uncertainty decreased most, which are also the parameters, that strongly affect the thermal behavior. The highest sensitivity is found for vertical and horizontal hydraulic conductivity as well as for groundwater flow velocity, indicating that investigation efforts for HT-ATES projects should focus on these parameters. Heat capacity and thermal conductivity have a smaller impact on the temperature distribution. Our work thus yields a consistent approach to identifying the parameters which can be best restricted by field investigations and subsequent model calibration. Focusing on these during field investigations thus enable improved model predictions of both HT-ATES operation and induced impacts.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Bundesministerium für Bildung und Forschung

Projektträger Jülich

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3