Interpretation of gravity–magnetic anomalies to delineate subsurface configuration beneath east geothermal province along the Mahanadi rift basin: a case study of non-volcanic hot springs

Author:

Basantaray Aurobindo Kumar,Mandal AnimeshORCID

Abstract

AbstractGravity and magnetic studies have been carried out over a non-volcanic hot spring zone consisting of Atri and Tarabalo hot springs along the intracontinental Mahanadi rift basin to delineate the subsurface structures and to understand their effect on the geothermal activities over a stable continental region. Calculated gravity and magnetic anomaly maps unveil the presence of hot springs along Mahanadi fault. The four-layer subsurface configuration as observed using radially averaged power spectrum analysis and 3D Euler solutions of both gravity and magnetic data indicates occurrence of multi-phases sedimentation and tectonic events. 2D forward, 2D inverse, and 3D inverse residual gravity models have delineated high-density igneous intrusive bodies surrounded by comparatively less dense Khondalites and Charnockites rich altered zones. The sharp high to low density transition zones are identified as the regional Mahanadi fault. The India–Antarctica rifting, existence of two hot springs along the Mahanadi fault of the rifted basin, and similarity in water chemistry strongly indicates an interconnection between these two hot springs. Igneous intrusions and radiogenic element-rich metamorphosed shallow formations combinedly acting as the heat source. Deciphered altered zone, deeper intrusion and deeply connected regional fault along the hot springs confirmed that this regional fault is providing the major pathway for water circulation through radioactive element-rich altered zones while the local and shallow fractures connecting the Mahanadi fault feed the hot springs of the study area.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3