Investigating high permeable zones in non-volcanic geothermal systems using lineament analysis and fault fracture density (FFD): northern Konawe Regency, Indonesia

Author:

Arrofi Daffa,Abu-Mahfouz Israa S.ORCID,Prayudi Sinatrya Diko

Abstract

AbstractIndonesia has high geothermal potential comprising 40% of the world’s potential geothermal energy, volcanic and non-volcanic systems. Volcanic systems have witnessed more exploration activities for geothermal resources compared to non-volcanic systems. A high potential non-volcanic system in Indonesia is located in the northern part of Konawe, Southeast Sulawesi. Previous research had identified surface temperature anomaly (high temperature) and some surface manifestations for this area, specifically in the northeast part of Wawolesea. However, the source of surface manifestations and permeable zones as an implication of a good reservoir are still unknown. Therefore, this research aims to investigate the permeable zones and geothermal potential in the non-volcanic geothermal system of north Wawolesea by applying lineaments analysis and the fault fracture density (FFD) method. A total of 1694 major and minor lineaments were manually delineated using ArcGIS based on Digital Elevation Model Nasional (DEMNAS). FFD map and rose diagrams displayed the orientation of all lineaments and structures with the major lineaments trending NNE–SSW, whereas the minor lineaments showed irregular distribution and orientation. Field measurements also show the same azimuth orientation for the mapped fractures. Five zones were characterized by high FFD values (2.81–4.54 km/km2). One of the extensively fractured zones (Zone C) is located between Meluhu and Lembo, covering an area of around 19.39 km2. This area is interpreted to be highly permeable and suggestive of a recharge area that contributes to surface manifestation in the Wawolesea. Therefore, the area between Meluhu and Lembo in the northern part of Konawe shows high geothermal potential due to its planar morphology and high FFD values. This study allows an improved understanding of how fracture geometry, distribution and density control the permeability in geothermal reservoirs.

Funder

College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3