A revised weight of evidence model for potential assessments of geothermal resources: a case study at western Sichuan Plateau, China

Author:

Huang Ronghua,Zhang ChaoORCID,Jiang Guangzheng,Zhang Haozhu

Abstract

AbstractEfficient exploration of geothermal resources is the basis of exploitation and utilization of geothermal resources. In recent years, Geographic Information System (GIS) has been increasingly used for the exploration owing to its power ability to integrate and analyze multiple sources of data related to the formation of geothermal resources, such as geology, geophysics, and geochemistry. Correctly understanding the control effect of evidence factors on geothermal resources is the premise and basis of whether the prediction results of evidence weight model are accurate. Traditionally, the conventional weight of evidence model assume that each evidence factor exerts a uniform controlling effect on the formation and distribution of geothermal resources. However, recent research indicates significant variations in the controlling ability of factors such as faults and granites, influenced by factors like activity levels and crystalline ages. Yet, studies addressing this differential control are lacking. To address this gap, we propose a series of weight of evidence models using abundant geological, geophysical, and geothermal data from the western Sichuan plateau, a high-temperature geothermal hotspot in China. This study aims to investigate the impact of varying controlling abilities of evidence factors on the evaluation model, with faults and granites as a case. Performance metrics include prediction rate, success rate index, receiver operating characteristic curve (ROC) and prediction rate of geothermal well. The findings of this research reveal that the weight of evidence model developed through the methodology outlined in this study exhibits superior performance compared to the conventional weight of evidence model. This superiority is evidenced by higher prediction rates, success indices, prediction rate of geothermal wells, and larger AUC values of ROC. Among these models, the weight of evidence model considering both fault and granite classification have the best performance in model evaluation indicators, with a prediction rate of 22.528 and a success index of 0.015408 in the very high potential area. The prediction rate and success index of the high potential area are 3.656 and 0.0025, respectively, and the prediction rate and success index of the middle potential area are 1.649 and 0.001128, respectively, and the AUC value is 0.808, indicating that the model has good accuracy. In terms of geothermal well prediction, the total prediction rate of geothermal favorable areas based on fault and granite classification evidence weight model is as high as 47.0526. Therefore, when constructing the weight of evidence model, the influence of the difference control of evidence factors on the formation of geothermal resources should be fully considered. These results underscore the effectiveness of the proposed methodology in enhancing the predictive accuracy and reliability of geothermal resource assessment in this study. Based on the prediction results of the weight of evidence model considering both fault and granite classification, four favorable geothermal areas with abundant surface heat display are identified in this paper, namely Kangding, Litang, Batang and Ganzi-Dege. In addition, the relatively weak surface heat display areas such as Jiulong, Daofu, Luhuo and Derong also show high geothermal potential. Some attention should be paid to geothermal exploration in the future.

Funder

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3