Thermophysical properties of surficial rocks: a tool to characterize geothermal resources of remote northern regions

Author:

Miranda M. M.ORCID,Giordano N.ORCID,Raymond J.ORCID,Pereira A. J. S. C.ORCID,Dezayes C.ORCID

Abstract

AbstractThe energetic framework of Canadian remote communities relies on fossil fuels. This has adverse environmental and energy security issues. In order to offset diesel consumption, the search for local, sustainable and carbon-free energy sources is of utmost importance. Unfortunately, in such remote regions, subsurface data to evaluate the geothermal potential is often nonexistent. This raises a key question: how to characterize geothermal resources associated to petrothermal systems based on surface data? Answering this question is the purpose of this work highlighting how outcrops can be used as deep subsurface analogues. The variability induced by laboratory methods to characterize thermophysical properties is further evaluated in the estimation of the present-day temperature at depth. The community of Kuujjuaq, Canada, is used as an example where guidelines are defined to evaluate the steady-state geotherm. Rock samples were collected and analyzed with a guarded heat flow meter and an optical scanner to determine thermal conductivity. Radiogenic elements concentration was evaluated with gamma-ray and mass spectrometry. 2D temperature models were built taking into account the regional geology and the results obtained from the different laboratory methods. A base-case temperature of 57–88 °C at 5 km is predicted below Kuujjuaq. This range is based on different methods used to evaluate both thermal conductivity and internal heat generation. The work conducted in Kuujjuaq shows that the combination of gamma-ray spectrometry and optical scanning gives lower base-case temperature predictions when compared to mass spectrometry combined with the guarded heat flow meter. Despite the nonexistence of deep temperature measurements in northern regions, the assessment of thermophysical properties from outcrops is shown to be a useful tool for a preliminary assessment of geothermal resources in remote areas facing critical energy issues.

Funder

Institut Nordique du Quebec

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3