Abstract
AbstractThe energetic framework of Canadian remote communities relies on fossil fuels. This has adverse environmental and energy security issues. In order to offset diesel consumption, the search for local, sustainable and carbon-free energy sources is of utmost importance. Unfortunately, in such remote regions, subsurface data to evaluate the geothermal potential is often nonexistent. This raises a key question: how to characterize geothermal resources associated to petrothermal systems based on surface data? Answering this question is the purpose of this work highlighting how outcrops can be used as deep subsurface analogues. The variability induced by laboratory methods to characterize thermophysical properties is further evaluated in the estimation of the present-day temperature at depth. The community of Kuujjuaq, Canada, is used as an example where guidelines are defined to evaluate the steady-state geotherm. Rock samples were collected and analyzed with a guarded heat flow meter and an optical scanner to determine thermal conductivity. Radiogenic elements concentration was evaluated with gamma-ray and mass spectrometry. 2D temperature models were built taking into account the regional geology and the results obtained from the different laboratory methods. A base-case temperature of 57–88 °C at 5 km is predicted below Kuujjuaq. This range is based on different methods used to evaluate both thermal conductivity and internal heat generation. The work conducted in Kuujjuaq shows that the combination of gamma-ray spectrometry and optical scanning gives lower base-case temperature predictions when compared to mass spectrometry combined with the guarded heat flow meter. Despite the nonexistence of deep temperature measurements in northern regions, the assessment of thermophysical properties from outcrops is shown to be a useful tool for a preliminary assessment of geothermal resources in remote areas facing critical energy issues.
Funder
Institut Nordique du Quebec
Publisher
Springer Science and Business Media LLC
Subject
Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment
Reference87 articles.
1. Augustine C, Tester JW, Anderson B. A comparison of geothermal with oil and gas well drilling costs. In: Thirty-first workshop on geothermal reservoir engineering. 2006 Jan 30–Feb 1; Stanford University, California. Stanford (USA): Stanford University; 2006; p. 1–15. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2006/augustin.pdf. Accessed 10 Oct 2019.
2. Ashwal LD, Morgan P, Kelley SA, Percival JA. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth Planet Sci Lett. 1987;85:439–50.
3. Bauer JF, Krumbholz M, Meier S, Tanner DC. Predictability of properties of a fractured geothermal reservoir: the opportunities and limitations of an outcrop analogue study. Geothermal Energy. 2017;5:24. https://doi.org/10.1186/s40517-017-0081-0.
4. Beardsmore GR, Cull JP. Crustal heat flow: a guide to measurement and modelling. Cambridge: Cambridge University Press; 2001.
5. Bédard K, Comeau F-A, Raymond J, Malo M, Nasr M. Geothermal characterization of the St. Lawrence Lowlands Sedimentary Basin, Québec, Canada. Nat Resour Res. 2018;27(4):479–502. https://doi.org/10.1007/s11053-017-9363-2.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献